Skip to main content
Log in

1H-NMR study of the metabolome of an exceptionally anoxia tolerant vertebrate, the crucian carp (Carassius carassius)

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The crucian carp (Carassius carassius) can tolerate anoxia for days to months, depending on the temperature. In this study, we applied 1H-NMR-based metabolomics to polar extracts of crucian carp brain, heart, muscle and liver samples obtained from fish exposed to either control normoxic conditions, acute anoxia (24 h), chronic anoxia (1 week) or reoxygenation (for 1 week following chronic anoxia) at 5 °C. Spectra of the examined tissues revealed changes in several energy-related compounds. In particular, anoxic stress resulted in decreased concentrations of phosphocreatine (muscle, liver) and glycogen (liver) and ATP/ADP (liver, heart and muscle) and increased concentrations of lactate (brain, heart, muscle) and beta-hydroxybutyric acid (all tissues). Likewise, increased concentrations of inhibitory compounds (glycine, gamma-amino butyric acid or GABA) and decreased concentrations of excitatory metabolites (glutamate, glutamine) were confirmed in the anoxic brain extracts. Additionally, a decrease of N-acetylaspartate (NAA), an important neuronal marker, was also observed in anoxic brains. The branched-chain amino acids (BCAA) valine/isoleucine/leucine increased in all anoxic tissues. Possibly, this general tissue increase can be due to an inhibited mitochondrial function or due to protein degradation/protein synthesis inhibition. In this study, the potential and strength of the 1H-NMR is highlighted by the detection of previously unrecognized changes in metabolites. Specifically, myo-inositol substantially decreased in the heart of anoxic crucian carp and anoxic muscle tissue displayed a decreased concentration of taurine, providing novel insights into the anoxia responses of the crucian carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society-Series B (Methodological), 57(1), 289–300.

    Google Scholar 

  • Bickler, P. E., & Buck, L. T. (2007). Hypoxia tolerance in reptiles, amphibians, and fishes: Life with variable oxygen availability. Annual Review of Physiology, 69, 145–170.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L. L., Ma, M. J., Becerra, L., et al. (1997). Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6408–6413.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. K., Dedeoglu, A., & Jenkins, B. G. (2007). Application of MRS to mouse models of neurodegenerative illness. NMR in Biomedicine, 20, 216–237.

    Article  PubMed  Google Scholar 

  • Coen, M., Lenz, E. M., Nicholson, J. K., et al. (2003). An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chemical Research in Toxicology, 16(3), 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Govindaraju, V., Young, K., & Maudsley, A. A. (2000). Proton NMR chemical shifts and coupling constants for brain metabolites. NMR in Biomedicine, 13(3), 129–153.

    Article  PubMed  CAS  Google Scholar 

  • Hylland, P., & Nilsson, G. E. (1999). Extracellular levels of amino acid neurotransmitters during anoxia and forced energy deficiency in crucian carp brain. Brain Research, 823, 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, D., Nilsson, G. E., & Doving, K. B. (1997). Anoxic depression of light-evoked potentials in retina and optic tectum of crucian carp. Neuroscience Letters, 237(2–3), 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 2, 1137–1143.

    Google Scholar 

  • Kullgren, A., Samuelsson, L. M., Forlin, L., et al. (2010). A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss). American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 299(6), R1440–R1448.

    Article  CAS  Google Scholar 

  • Kuzmina, V. V., Gavrovskaya, L. K., & Ryzhova, O. V. (2010). Taurine. Effect on exotrophia and metabolism in mammals and fish. Journal of Evolutionary Biochemistry and Physiology, 46(1), 19–27.

    Article  CAS  Google Scholar 

  • Lin, C. Y., Wu, H. F., Tjeerdema, R. S., & Viant, M. R. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3(1), 55–67.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). NMR spectroscopy of biofluids. Annual Reports on NMR Spectroscopy, 38, 1–88.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Holmes, E. (2007). The handbook of metabonomics and metabolomics (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Lutz, P. L., & Nilsson, G. E. (1997). Contrasting strategies for anoxic brain survival: Glycolysis up or down. Journal of Experimental Biology, 200, 411–419.

    PubMed  CAS  Google Scholar 

  • Lutz, P. L., Nilsson, G. E., & Prentice, H. M. (2003). The brain without oxygen causes of failure-physiological and molecular mechanisms for survival. Mechanisms of Brain Anoxia Tolerance (3rd ed.) (pp. 131–189). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Mandic, M., Lau, G. Y., Nijjar, M. M. S., & Richards, J. G. (2008). Metabolic recovery in goldfish: A comparison of recovery from severe hypoxia exposure and exhaustive exercise. Comparative Biochemistry and Physiology, Part C, 148, 332–338.

    Google Scholar 

  • Nilsson, G. E. (1988). A comparative study of aldehyde dehydrogenase and alcohol dehydrogenase activity in crucian carp and three other vertebrates: Apparent adaptations to ethanol production. Journal of Comparative Physiology B, 158, 479–485.

    Article  CAS  Google Scholar 

  • Nilsson, G. E. (1990). Long term anoxia in crucian carp: Changes in the levels of amino acid and monoamine neurotransmitters in the brain, catecholamines in chromaffin tissue, and liver glycogen. Journal of Experimental Biology, 150, 295–320.

    PubMed  CAS  Google Scholar 

  • Nilsson, G. E., & Lutz, P. L. (1991). Release of inhibitory neurotransmitters in response to anoxia in turtle brain. American Journal of Physiology, 261(1), R32–R37.

    PubMed  CAS  Google Scholar 

  • Nilsson, G. E., & Lutz, P. L. (2004). Anoxia tolerant brains. Journal of Cerebral Blood Flow and Metabolism, 24(5), 475–486.

    PubMed  Google Scholar 

  • Nilsson, G. E., Lutz, P. L., & Jackson, T. L. (1991). Neurotransmittors and anoxic survival of the brain: A comparison between anoxia-tolerant and anoxia-intolerant vertebrates. Journal of Physiological Zoology, 64, 638–652.

    CAS  Google Scholar 

  • Podrabsky, J. E., Lopez, J. P., Fan, T. W. M., Higashi, R., & Somero, G. N. (2007). Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: Insights from a metabolomics analysis. Journal of Experimental Biology, 210(13), 2253–2266.

    Article  PubMed  CAS  Google Scholar 

  • Raman, L., Tkac, I., Ennis, K., et al. (2005). In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus. Developmental Brain Research, 156(2), 202–209.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer, S. W., Jong, C. J., Ramila, K. C., & Azuma, J. (2010). Physiological roles of taurine in heart and muscle. Journal of Biomedical Science, 17(1), 1–8.

    Article  Google Scholar 

  • Shoubridge, E. A., & Hochachka, P. W. (1980). Ethanol: Novel end product of vertebrate anaerobic metabolism. Science, 209(4453), 308–309.

    Article  PubMed  CAS  Google Scholar 

  • Stecyk, J. A. W., & Farrell, A. P. (2002). Cardiorespiratory responses of the common carp (Cyprinus carpio) to severe hypoxia at three acclimation temperatures. Journal of Experimental Biology, 205(6), 759–768.

    PubMed  CAS  Google Scholar 

  • Stecyk, J. A. W., Stensløkken, K.-O., Farrell, A. P., & Nilsson, G. E. (2004). Maintained cardiac pumping in anoxic crucian carp. Science, 306, 77.

    Article  PubMed  CAS  Google Scholar 

  • Stentiford, G. D., Viant, M. R., Ward, D. G., et al. (2005). Liver tumors in wild flatfish: A histopathological, proteomic, and metabolomic study. OMICS: A Journal of Integrative Biology, 9(3), 281–299.

    Article  CAS  Google Scholar 

  • Van Waarde, A., Van den Thillart, G., & Dobbe, F. (1982). Anaerobic metabolism of goldfish, Carassius auratus (L.). Influence of anoxia on mass-action ratios of transaminase reactions and levels of ammonia and succinate. Journal of Comparative Physiology B-Biochemical, Systemic, and Environmental, Physiology, 147(1), 53–59.

    Article  Google Scholar 

  • Van Waversveld, J., Addink, A. D. F., & van den Thillart, G. (1989). Simultaneous direct and indirect calorimetry on normoxic and anoxic goldfish. Journal of Experimental Biology, 142, 325–335.

    Google Scholar 

  • Voet, D., & Voet, J. G. (1995). Biochemistry (Vol. 2). New York: Wiley.

    Google Scholar 

  • Vornanen, M., Asikainen, J., & Haverinen, J. (2011). Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp (Carassius carassius L.). Naturwissenschaften, 98, 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Vornanen, M., & Paajanen, V. (2006). Seasonal changes in glycogen content and Na+-K+-ATPase activity in the brain of crucian carp. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291, 1482–1489.

    Article  Google Scholar 

  • Vornanen, M., Stecyk, J. A. W., & Nilsson, G. E. (2009). The anoxia-tolerant crucian carp (Carassius carassius L.). Fish Physiology, 27, 397–441.

    Article  Google Scholar 

  • Vu, T. N., Valkenborg, D., Smets, K., Verwaest, K., Dommisse, R., Lemiere, F., et al. (2011). An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinformatics, 12, 405.

    Article  PubMed  Google Scholar 

  • Wang, Y., Haipeng, S., Lu, G., Ren, S., & Chen, J. (2011). Catabolism of branched-chain amino acids in heart failure: Insights from genetic models. Pediatric Cardiology, 32, 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81–89.

    Article  CAS  Google Scholar 

  • Wu, H. F., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR and MS-based metabolomics. Journal of Analytical Biochemistry, 372(2), 204–212.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Isabelle Lardon and Trung Nghia Vu are funded by interdisciplinar scholarships of the University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Lardon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lardon, I., Nilsson, G.E., Stecyk, J.A.W. et al. 1H-NMR study of the metabolome of an exceptionally anoxia tolerant vertebrate, the crucian carp (Carassius carassius). Metabolomics 9, 311–323 (2013). https://doi.org/10.1007/s11306-012-0448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0448-y

Keywords

Navigation