Skip to main content
Log in

A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Currently there is a surge of interest in exploiting toxicogenomics to screen the toxicity of chemicals, enabling rapid and accurate categorisation into classes of defined mode-of-action (MOA), and prioritising chemicals for further testing. Direct infusion FT-ICR mass spectrometry-based metabolomics can provide a sensitive and unbiased analysis of metabolites in only 15 mins and therefore has considerable potential for chemical screening. The water flea, Daphnia magna, is an OECD test species and is utilised internationally for toxicity testing. However, no metabolomics studies of this species have been reported. Here we optimised and evaluated the effectiveness of FT-ICR mass spectrometry metabolomics for toxicity testing in D. magna. We confirmed that high-quality mass spectra can be recorded from as few as 30 neonates (<24 h old; 224 μg dry mass) or a single adult daphnid (301 μg dry mass). An OECD 24 h acute toxicity test was conducted with neonates at copper concentrations of 0, 5, 10, 25, 50 μg l−1. A total of 5447 unique peaks were detected reproducibly, of which 4768 were assigned at least one empirical formula and 1017 were putatively identified based upon accurate mass measurements. Significant copper-induced changes to the daphnid metabolome, consistent with the documented MOA of copper, were detected thereby validating the approach. In addition, N-acetylspermidine was putatively identified as a novel biomarker of copper toxicity. Collectively, our results highlight the excellent sensitivity, reproducibility and mass accuracy of FT-ICR mass spectrometry, and provide strong evidence for its applicability to high-throughput screening of chemical toxicity in D. magna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ankley, G. T., Miracle, A., Perkins, E. J., & Daston, G. P. (2008). Genomics in regulatory ecotoxicology: Applications and challenges. Boca Raton, London: CRC Press.

    Google Scholar 

  • Arambasic, M. B., Bjelic, S., & Subakov, G. (1995). Acute toxicity of heavy metals (copper, lead and zinc), phenol and sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna ST-comparative investigations and the practical applications. Water Research, 29, 497–503. doi:10.1016/0043-1354(94)00178-A.

    Article  CAS  Google Scholar 

  • Baldovin, A., Wu, W., Centner, V., et al. (1996). Feature selection for the discrimination between pollution types with partial least squares modelling. Analyst (London), 121, 1603–1608. doi:10.1039/an9962101603.

    Article  CAS  Google Scholar 

  • Barata, C., Navarro, J. C., Varo, I., et al. (2005). Changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in Daphnia magna during the aging process. Comparative Biochemistry and Physiology B: Comparative Biochemistry, 140, 81–90. doi:10.1016/j.cbpc.2004.09.025.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate—A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300.

    Google Scholar 

  • Benson, W. H., Gallagher, K., & McClintock, J. T. (2007). U.S. Environmental Protection Agency’s activities to prepare for regulatory and risk assessment applications of genomics information. Environmental and Molecular Mutagenesis, 48, 359–362. doi:10.1002/em.20302.

    Article  PubMed  CAS  Google Scholar 

  • Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. The Journal of Biological Chemistry, 272, 20313–20316. doi:10.1074/jbc.272.33.20313.

    Article  PubMed  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    PubMed  CAS  Google Scholar 

  • Bopp, S. K., Abicht, H. K., & Knauer, K. (2008). Copper-induced oxidative stress in rainbow trout gill cells. Aquatic Toxicology (Amsterdam, Netherlands), 86, 197–204. doi:10.1016/j.aquatox.2007.10.014.

    CAS  Google Scholar 

  • Breitling, R., Pitt, A. R., & Barrett, M. P. (2006). Precision mapping of the metabolome. Trends in Biotechnology, 24, 543–548. doi:10.1016/j.tibtech.2006.10.006.

    Article  PubMed  CAS  Google Scholar 

  • Breitling, R., Vitkup, D., & Barrett, M. P. (2008). New surveyor tools for charting microbial metabolic maps. Nature Reviews. Microbiology, 6, 156–161. doi:10.1038/nrmicro1797.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231. doi:10.1002/mas.20011.

    Article  PubMed  CAS  Google Scholar 

  • Casero, R. A., & Pegg, A. E. (1993). Spermidine spermine N1-acetyltransferase—the turning-point in polyamine metabolism. The FASEB Journal, 7, 653–661.

    PubMed  CAS  Google Scholar 

  • Coen, M., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chemical Research in Toxicology, 21, 9–27. doi:10.1021/tx700335d.

    Article  PubMed  CAS  Google Scholar 

  • Coffino, P., & Poznanski, A. (1991). Killer polyamines. Journal of Cellular Biochemistry, 45, 54–58. doi:10.1002/jcb.240450112.

    Article  PubMed  CAS  Google Scholar 

  • Colbourne, J. K., Singan, V. R., & Gilbert, D. G. (2005). wFleaBase: The Daphnia genomics information system. http://wfleabase.org/.

  • Connon, R., Hooper, H. L., Sibly, R. M., et al. (2008). Linking molecular and population stress responses in Daphnia magna exposed to cadmium. Environmental Science and Technology, 42, 2181–2188. doi:10.1021/es702469b.

    Article  PubMed  CAS  Google Scholar 

  • De Coen, W. M., & Janssen, C. R. (2003). A multivariate biomarker-based model predicting population-level responses of Daphnia magna. Environmental Toxicology and Chemistry, 22, 2195–2201. doi:10.1897/02-223.

    Article  PubMed  Google Scholar 

  • Deleebeeck, N. M., De Schamphelaere, K. A., Heijerick, D. G., Bossuyt, B. T., & Janssen, C. R. (2008). The acute toxicity of nickel to Daphnia magna: Predictive capacity of bioavailability models in artificial and natural waters. Ecotoxicology and Environmental Safety, 70, 67–78. doi:10.1016/j.ecoenv.2007.05.002.

    Article  PubMed  CAS  Google Scholar 

  • De Meester, L., & Vanoverbeke, J. (1999). An uncoupling of male and sexual egg production leads to reduced inbreeding in the cyclical parthenogen Daphnia. Proceedings of the Biological Sciences, 266, 2471–2477. doi:10.1098/rspb.1999.0948.

    Article  PubMed  Google Scholar 

  • De Schamphelaere, K. A. C., & Janssen, C. R. (2004). Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna. Environmental Toxicology and Chemistry, 23, 1115–1122. doi:10.1897/02-593.

    Article  PubMed  Google Scholar 

  • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290. doi:10.1021/ac051632c.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B. (2008). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Physical Biology, 5, 11001. doi:10.1088/1478-3975/5/1/011001.

    Article  PubMed  Google Scholar 

  • Ekman, D. R., Teng, Q., Villeneuve, D. L., et al. (2008). Investigating compensation and recovery of fathead minnow (Pimephales promelas) exposed to 17 alpha-ethynylestradiol with metabolite profiling. Environmental Science and Technology, 42, 4188–4194. doi:10.1021/es8000618.

    Article  PubMed  CAS  Google Scholar 

  • Gaetke, L. M., & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189, 147–163. doi:10.1016/S0300-483X(03)00159-8.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Danell, R. M., Patel, J. R., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 4, 128–140. doi:10.1007/s11306-008-0104-8.

    Article  PubMed  CAS  Google Scholar 

  • Heckmann, L.-R., Sibly, R. M., Connon, R., et al. (2008). Systems biology meets stress ecology: Linking molecular and organismal stress responses in Daphnia magna. Genome Biology, 9, R40. doi:10.1186/gb-2008-9-2-r40.

    Article  PubMed  Google Scholar 

  • Heijerick, D. G., Janssen, C. R., & De Coen, W. M. (2003). The combined effects of hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to D. magna: Development of a surface response model. Archives of Environmental Contamination and Toxicology, 44, 210–217. doi:10.1007/s00244-002-2010-9.

    Article  CAS  Google Scholar 

  • Ikenaka, Y., Eun, H., Ishizaka, M., & Miyabara, Y. (2006). Metabolism of pyrene by aquatic crustacean, Daphnia magna. Aquatic Toxicology (Amsterdam, Netherlands), 80, 158–165. doi:10.1016/j.aquatox.2006.08.005.

    CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Hattori, M., et al. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Research, 34, D354–D357. doi:10.1093/nar/gkj102.

    Article  PubMed  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2007). Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105. doi:10.1186/1471-2105-8-105.

    Article  PubMed  Google Scholar 

  • Knops, M., Altenburger, R., & Segner, H. (2001). Alterations of physiological energetics, growth and reproduction of Daphnia magna under toxicant stress. Aquatic Toxicology (Amsterdam, Netherlands), 53, 79–90. doi:10.1016/S0166-445X(00)00170-3.

    CAS  Google Scholar 

  • Linder, M. C., & Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. The American Journal of Clinical Nutrition, 63, 797S–811S.

    PubMed  CAS  Google Scholar 

  • Makarov, A., Denisov, E., Lange, O., & Horning, S. (2006). Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer. Journal of the American Society for Mass Spectrometry, 17, 977–982. doi:10.1016/j.jasms.2006.03.006.

    Article  PubMed  CAS  Google Scholar 

  • Martins, J., Oliva Teles, L., & Vasconcelos, V. (2007a). Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environment International, 33, 414–425. doi:10.1016/j.envint.2006.12.006.

    Article  PubMed  CAS  Google Scholar 

  • Martins, J., Soares, M. L., Saker, M. L., Olivateles, L., & Vasconcelos, V. M. (2007b). Phototactic behavior in Daphnia magna Straus as an indicator of toxicants in the aquatic environment. Ecotoxicology and Environmental Safety, 67, 417–422. doi:10.1016/j.ecoenv.2006.11.003.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews. Drug Discovery, 1, 153–161. doi:10.1038/nrd728.

    Article  PubMed  CAS  Google Scholar 

  • OECD. (1998). Guidelines for testing of chemicals, no. 211—Daphnia magna reproduction test (p. 21). Organisation for Economic Cooperation and Development.

  • OECD. (2004). Guidelines for Testing of Chemicals, No. 202—Daphnia sp.acute immobilisation test (p. 12). Organisation for Economic Cooperation and Development.

  • Olsen, J. V., de Godoy, L. M. F., Li, G., Macek, B., Mortensen, P., Pesch, R., et al. (2005). Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular & Cellular Proteomics, 4, 2010–2021. doi:10.1074/mcp.T500030-MCP200.

    Article  CAS  Google Scholar 

  • Parsons, H. M., Ludwig, C., Günther, U. L., & Viant, M. R. (2007). Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinformatics, 8, 234. doi:10.1186/1471-2105-8-234.

    Article  PubMed  Google Scholar 

  • Poynton, H. C., Varshavsky, J. R., Chang, B., et al. (2007). Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environmental Science and Technology, 41, 1044–1050. doi:10.1021/es0615573.

    Article  PubMed  CAS  Google Scholar 

  • REACH. (2006). Registration, evaluation, authorisation and restriction of chemicals REACH, regulation no. 1907/2006. The European Parliament and The Council of The European Union.

  • Robosky, L. C., Robertson, D. G., Baker, J. D., Rane, S., & Reily, M. D. (2002). In vivo toxicity screening programs using metabonomics. Combinatorial Chemistry & High Throughput Screening, 5, 651–662.

    CAS  Google Scholar 

  • Sandbacka, M., Christianson, I., & Isomaa, B. (2000). The acute toxicity of surfactants on fish cells, Daphnia magna and fish-a comparative study. Toxicology In Vitro, 14, 61–68. doi:10.1016/S0887-2333(99)00083-1.

    Article  PubMed  CAS  Google Scholar 

  • Sangster, T. P., Wingate, J. E., Burton, L., Teichert, F., & Wilson, I. D. (2007). Investigation of analytical variation in metabonomic analysis using liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 2965–2970. doi:10.1002/rcm.3164.

    Article  PubMed  CAS  Google Scholar 

  • Santojanni, A., Gorbi, G., & Sartore, F. (1998). Prediction of fecundity in chronic toxicity tests on Daphnia magna. Water Research, 32, 3146–3156. doi:10.1016/S0043-1354(98)00052-9.

    Article  CAS  Google Scholar 

  • Smolders, R., Baillieul, M., & Blust, R. (2005). Relationship between the energy status of Daphnia magna and its sensitivity to environmental stress. Aquatic Toxicology (Amsterdam, Netherlands), 73, 155–170. doi:10.1016/j.aquatox.2005.03.006.

    CAS  Google Scholar 

  • Soetaert, A., Vandenbrouck, T., van der Ven, K., et al. (2007a). Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects. Aquatic Toxicology (Amsterdam, Netherlands), 83, 212–222. doi:10.1016/j.aquatox.2007.04.010.

    CAS  Google Scholar 

  • Soetaert, A., van der Ven, K., Moens, L. N., et al. (2007b). Daphnia magna and ecotoxicogenomics: Gene expression profiles of the anti-ecdysteroidal fungicide fenarimol using energy-, molting- and life stage-related cDNA libraries. Chemosphere, 67, 60–71. doi:10.1016/j.chemosphere.2006.09.076.

    Article  PubMed  CAS  Google Scholar 

  • Soga, T., Baran, R., Suematsu, M., et al. (2006). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. The Journal of Biological Chemistry, 281, 16768–16776. doi:10.1074/jbc.M601876200.

    Article  PubMed  CAS  Google Scholar 

  • Southam, A. D., Payne, T. G., Cooper, H. J., Arvanitis, T. N., & Viant, M. R. (2007). Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Analytical Chemistry, 79, 4595–4602. doi:10.1021/ac062446p.

    Article  PubMed  CAS  Google Scholar 

  • Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336. doi:10.1016/0891-5849(94)00159-H.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, H., Matsuzaki, S., Hamana, K., Yamada, S., & Kobayashi, S. (1991). Alpha-tocopherol and superoxide-dismutase suppress and diethyldithiocarbamate and phorone enhance the lipopolysaccharide-induced increase in N1-acetylspermidine concentrations in mouse-liver. Circulatory Shock, 33, 171–177.

    PubMed  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221. doi:10.1007/s11306-007-0082-2.

    Article  CAS  Google Scholar 

  • Takahashi, H., Kai, K., Shinbo, Y., et al. (2008). Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry, 391, 2769–2782. doi:10.1007/s00216-008-2195-5.

    Article  PubMed  CAS  Google Scholar 

  • Tsui, M. T., & Wang, W. X. (2007). Biokinetics and tolerance development of toxic metals in Daphnia magna. Environmental Toxicology and Chemistry, 26, 1023–1032. doi:10.1897/06-430R.1.

    Article  PubMed  CAS  Google Scholar 

  • US-EPA. (2004). Potential implications of genomics for regulatory and risk assessment applications at EPA (p. 70). United States Environmental Protection Agency.

  • Viant, M. R., Bundy, J. G., Pincetich, C. A., de Ropp, J. S., & Tjeerdema, R. S. (2005). NMR-derived developmental metabolic trajectories: An approach for visualizing the toxic actions of trichloroethylene during embryogenesis. Metabolomics, 1, 149–158. doi:10.1007/s11306-005-4429-2.

    Article  CAS  Google Scholar 

  • Viant, M. R., Pincetich, C. A., & Tjeerdema, R. S. (2006). Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics. Aquatic Toxicology (Amsterdam, Netherlands), 77, 359–371. doi:10.1016/j.aquatox.2006.01.009.

    CAS  Google Scholar 

  • Watanabe, H., Takahashi, E., Nakamura, Y., et al. (2007). Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environmental Toxicology and Chemistry, 26, 669–676. doi:10.1897/06-075R.1.

    Article  PubMed  CAS  Google Scholar 

  • Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89. doi:10.1007/s11306-007-0099-6.

    Article  CAS  Google Scholar 

  • Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212. doi:10.1016/j.ab.2007.10.002.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. K., Rempel, D., Pramanik, B. N., & Gross, M. L. (2005). Accurate mass measurements by Fourier transform mass spectrometry. Mass Spectrometry Reviews, 24, 286–309. doi:10.1002/mas.20013.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Amanda Callaghan, Prof. Richard Sibly, Dr. Lars Heckmann and Chris Hill (University of Reading) for help with establishing the D. magna culturing facility at Birmingham, Rhiannon David for assistance with the culturing, and Richard Green for valuable discussions on the mechanisms of copper toxicity. NST and MRV thank the NERC for a PhD studentship (NER/S/A/2006/14053) and an Advanced Fellowship (NER/J/S/2002/00618), respectively. RJMW acknowledges the financial support of the Darwin Trust of Edinburgh. ADS thanks the BBSRC and the Centre for Environment, Fisheries & Aquaculture Science for a PhD CASE studentship (under Cefas Seedcorn contract DP195), and TGP and TNA thank the EPSRC for a PhD studentship and DTA support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Viant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1788 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, N.S., Weber, R.J.M., Southam, A.D. et al. A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics . Metabolomics 5, 44–58 (2009). https://doi.org/10.1007/s11306-008-0133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0133-3

Keywords

Navigation