Skip to main content

Advertisement

Log in

G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The medicinal chemistry and pharmacology of the four subtypes of adenosine receptors (ARs) and the eight subtypes of P2Y receptors (P2YRs, activated by a range of purine and pyrimidine mono- and dinucleotides) has recently advanced significantly leading to selective ligands. X-ray crystallographic structures of both agonist- and antagonist-bound forms of the A2AAR have provided unprecedented three-dimensional detail concerning molecular recognition in the binding site and the conformational changes in receptor activation. It is apparent that this ubiquitous cell signaling system has implications for understanding and treating many diseases. ATP and other nucleotides are readily released from intracellular sources under conditions of injury and organ stress, such as hypoxia, ischemia, or mechanical stress, and through channels and vesicular release. Adenosine may be generated extracellularly or by cellular release. Therefore, depending on pathophysiological factors, in a given tissue, there is often a tonic activation of one or more of the ARs or P2YRs that can be modulated by exogenous agents for a beneficial effect. Thus, this field has provided fertile ground for pharmaceutical development, leading to clinical trials of selective receptor ligands as imaging agents or for conditions including cardiac arrhythmias, ischemia/reperfusion injury, diabetes, pain, thrombosis, Parkinson’s disease, rheumatoid arthritis, psoriasis, dry eye disease, pulmonary diseases such as cystic fibrosis, glaucoma, cancer, chronic hepatitis C, and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AR:

Adenosine receptor

EL:

Extracellular loop

GPCR:

G protein-coupled receptor

IL:

Intracellular loop

TM:

Transmembrane helix

NECA:

Adenosine-5′-N-ethyluronamide

PD:

Parkinson’s disease

PET:

Positron emission tomography

SAR:

Structure–activity relationship

SPECT:

Single photon emission tomography

UDPG:

Uridine-5′-diphosphoglucose

References

  1. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller C (2011) Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  PubMed  CAS  Google Scholar 

  2. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Fumagalli M, King BF, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII. Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  3. Rittiner JE, Korboukh I, Hull-Ryde EA, Jin J, Janzen WP, Frye SV, Zylka MJ (2012) The nucleotide AMP is an adenosine A1 receptor agonist. J Biol Chem PMID:22215671, Jan 3. [Epub ahead of print]

    Google Scholar 

  4. Orriss I, Syberg S, Wang N, Robaye B, Gartland A, Jorgensen N, Arnett T, Boeynaems JM (2011) Bone phenotypes of P2 receptor knockout mice. Front Biosci (Schol Ed) 3:1038–1046

    Article  Google Scholar 

  5. Klaasse EC, IJzerman AP, de Grip WJ, Beukers MW (2008) Internalization and desensitization of adenosine receptors. Purinergic Signal 4:21–37

    Article  PubMed  CAS  Google Scholar 

  6. Hechler B, Gachet C (2011) P2 receptors and platelet function. Purinergic Signal 4:293–303

    Article  CAS  Google Scholar 

  7. Luo W, Wang Y, Reiser G (2011) Proteinase-activated receptors, nucleotide P2Y receptors, and μ-opioid receptor-1B are under the control of the type I transmembrane proteins p23 and p24A in post-Golgi trafficking. J Neurochem 117:71–81

    Article  PubMed  CAS  Google Scholar 

  8. Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM (2011) Molecular mechanisms of purine and pyrimidine nucleotide release. Adv Pharmacol 61:221–261

    Article  PubMed  CAS  Google Scholar 

  9. Kukulski F, Levesque SA, Sevigny J (2011) Impact of ectoenzymes on P2 and P1 receptor signaling. Adv Pharmacol 61:263–299

    Article  PubMed  CAS  Google Scholar 

  10. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  11. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schiöth HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273

    Article  PubMed  CAS  Google Scholar 

  12. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, IJzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  PubMed  CAS  Google Scholar 

  13. Jaakola VP, Lane JR, Lin JY, Katritch V, IJzerman AP, Stevens RC (2010) Ligand binding and subtype selectivity of the human A2A adenosine receptor. Identification and characterization of essential amino acid residues. J Biol Chem 285:13032–13044

    Article  PubMed  CAS  Google Scholar 

  14. Ivanov AA, Barak D, Jacobson KA (2009) Evaluation of homology modeling of G protein-coupled receptors in light of the A2A adenosine receptor crystallographic structure. J Med Chem 52:3284–3292

    Article  PubMed  CAS  Google Scholar 

  15. Tosh DK, Phan K, Deflorian F, Wei Q, Gao ZG, Jacobson KA (2011) Truncated (N)-methanocarba nucleosides as A1 adenosine receptor agonists and partial agonists: overcoming lack of a recognition element. ACS Med Chem Lett 2:626–631

    Article  PubMed  CAS  Google Scholar 

  16. Dal Ben D, Lambertucci C, Marucci G, Volpini R, Cristalli G (2010) Adenosine receptor modeling: what does the A2A crystal structure tell us? Curr Top in Med Chem 10:993–1018

    Article  CAS  Google Scholar 

  17. Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, Marshall FH (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Struct 19:1283–1293

    Article  CAS  Google Scholar 

  18. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    Article  PubMed  CAS  Google Scholar 

  19. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    Article  PubMed  CAS  Google Scholar 

  20. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Conn PM, Sealfon SC (eds) Methods in Neurosciences, Vol. 25. Academic, USA, pp 366–428

    Google Scholar 

  21. Costanzi S, Mamedova L, Gao ZG, Jacobson KA (2004) Architecture of P2Y nucleotide receptors: Structural comparison based on sequence analysis, mutagenesis, and homology modeling. J Med Chem 47:5393–5404

    Article  PubMed  CAS  Google Scholar 

  22. Torres B, Zambon AC, Insel PA (2002) P2Y11 receptors activate adenylyl cyclase and contribute to nucleotide-promoted cAMP formation in MDCK-D1 cells. J Biol Chem 277:7761–7765

    Article  PubMed  CAS  Google Scholar 

  23. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Article  PubMed  CAS  Google Scholar 

  24. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM (2001) Identification of a novel human ADP receptor coupled to Gi. J Biol Chem 276:41479–41485

    Article  PubMed  CAS  Google Scholar 

  25. Moro S, Guo D, Camaioni E, Boyer JL, Harden TK, Jacobson KA (1998) Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites. J Med Chem 41:1456–1466

    Article  PubMed  CAS  Google Scholar 

  26. van Rhee AM, Fischer B, van Galen PJ, Jacobson KA (1995) Modelling the P2Y purinoceptor using rhodopsin as template. Drug Design Discov 13:133–154

    Google Scholar 

  27. Jiang Q, Guo D, Lee BX, Van Rhee AM, Kim YC, Nicholas RA, Schachter J, Harden TK, Jacobson KA (1997) A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol Pharmacol 52:499–507

    PubMed  CAS  Google Scholar 

  28. Erb L, Garrad R, Wang Y, Quinn T, Turner JT, Weisman GA (1995) Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem 270:4185–4188

    Article  PubMed  CAS  Google Scholar 

  29. Ecke D, Fischer B, Reiser G (2008) Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis. Br J Pharmacol 155:1250–1255

    Article  PubMed  CAS  Google Scholar 

  30. Guo D, von Kügelgen I, Moro S, Kim YC, Jacobson KA (2002) Evidence for the recognition of non-nucleotide antagonists within the transmembrane domains of the human P2Y1 receptor. Drug Devel Res 57:173–181

    Article  CAS  Google Scholar 

  31. Hillmann P, Ko GY, Spinrath A, Raulf A, von Kügelgen I, Wolff SC, Nicholas RA, Kostenis E, Höltje HD, Müller CE (2009) Key determinants of nucleotide-activated G protein-coupled P2Y2 receptor function revealed by chemical and pharmacological experiments, mutagenesis and homology modeling. J Med Chem 52:2762–2775

    Article  PubMed  CAS  Google Scholar 

  32. Hoffmann C, Moro S, Nicholas RA, Harden TK, Jacobson KA (1999) The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes. J Biol Chem 274:14639–14647

    Article  PubMed  CAS  Google Scholar 

  33. Hoffmann K, Sixel U, Di Pasquale F, von Kügelgen I (2008) Involvement of basic amino acid residues in transmembrane regions 6 and 7 in agonist and antagonist recognition of the human platelet P2Y12-receptor. Biochem Pharmacol 76:1201–1213

    Article  PubMed  CAS  Google Scholar 

  34. Hoffmann K, Baqi Y, Morena MS, Glänzel M, Müller CE, von Kügelgen I (2009) Interaction of new, very potent non-nucleotide antagonists with Arg256 of the human platelet P2Y12 receptor. J Pharm Exp Therap 331:648–655

    Article  CAS  Google Scholar 

  35. Ivanov AA, Ko H, Cosyn L, Maddileti S, Besada P, Fricks I, Costanzi S, Harden TK, Van Calenbergh S, Jacobson KA (2007) Molecular modeling of the human P2Y2 receptor and design of a selective agonist, 2′-amino-2′-deoxy-2-thiouridine 5′-triphosphate. J Med Chem 50:1166–1176

    Article  PubMed  CAS  Google Scholar 

  36. Qi AD, Zambon AC, Insel PA, Nicholas RA (2001) An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. Mol Pharmacol 60:1375–1382

    PubMed  CAS  Google Scholar 

  37. Teng R, Oliver S, Hayes MA, Butler K (2010) Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos 38:1514–1521

    Article  PubMed  CAS  Google Scholar 

  38. Nandanan E, Jang SY, Moro S, Kim HO, Siddiqui MA, Russ P, Marquez VE, Busson R, Herdewijn P, Harden TK, Boyer JL, Jacobson KA (2000) Synthesis, biological activity, and molecular modeling of ribose-modified deoxyadenosine bisphosphate analogues as P2Y1 receptor ligands. J Med Chem 43:829–842

    Article  PubMed  CAS  Google Scholar 

  39. Moro S, Jacobson KA (2002) Molecular modeling as a tool to investigate molecular recognition in P2Y receptors. Curr Pharmaceut Design 8:99–110

    Article  Google Scholar 

  40. Major DT, Fischer B (2004) Molecular recognition in purinergic receptors. 1. A comprehensive computational study of the hP2Y1-receptor. J Med Chem 47:4391–4404

    Article  PubMed  CAS  Google Scholar 

  41. Major DT, Nahum V, Wang Y, Reiser G, Fischer B (2004) Molecular recognition in purinergic receptors. 2. Diastereoselectivity of the hP2Y1-receptor. J Med Chem 47:4405–4416

    Article  PubMed  CAS  Google Scholar 

  42. Jacobson KA, Costanzi S, Ivanov AA, Tchilibon S, Besada P, Gao ZG, Maddileti S, Harden TK (2006) Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5′-triphosphate analogues at the human P2Y2 and P2Y4 receptors. Biochem Pharmacol 71:540–549

    Article  PubMed  CAS  Google Scholar 

  43. Costanzi S, Joshi BV, Maddileti S, Mamedova L, Gonzalez-Moa MJ, Marquez VE, Harden TK, Jacobson KA (2005) Human P2Y6 receptor: molecular modeling leads to the rational design of a novel agonist based on a unique conformational preference. J Med Chem 48:8108–8111

    Article  PubMed  CAS  Google Scholar 

  44. Besada P, Shin DH, Costanzi S, Ko H, Mathé C, Gagneron J, Gosselin G, Maddileti S, Harden TK, Jacobson KA (2006) Structure–activity relationships of uridine 5′-diphosphate analogues at the human P2Y6 receptor. J Med Chem 49:5532–5543

    Article  PubMed  CAS  Google Scholar 

  45. Zylberg J, Ecke D, Fischer B, Reiser G (2007) Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis. Biochem J 405:277–286

    Article  PubMed  CAS  Google Scholar 

  46. Ivanov AA, Fricks I, Harden TK, Jacobson KA (2007) Molecular dynamics simulation of the P2Y14 receptor. Ligand docking and identification of a putative binding site of the distal hexose moiety. Bioorg Med Chem Lett 17:761–766

    Article  PubMed  CAS  Google Scholar 

  47. Mao Y, Zhang L, Jin J, Ashby B, Kunapuli SP (2010) Mutational analysis of residues important for ligand interaction with the human P2Y12 receptor. Eur J Pharmacol 644:10–16

    Article  PubMed  CAS  Google Scholar 

  48. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  PubMed  CAS  Google Scholar 

  49. Deflorian F, Jacobson KA (2011) Comparison of three GPCR structural templates for modeling of the P2Y12 nucleotide receptor. J Comput Aided Mol Des 25:329–338

    Article  PubMed  CAS  Google Scholar 

  50. Maruoka H, Jayasekara MP, Barrett MO, Franklin DA, de Castro S, Kim N, Costanzi S, Harden TK, Jacobson KA (2011) Pyrimidine nucleotides with 4-alkyloxyimino and terminal tetraphosphate δ-ester modifications as selective agonists of the P2Y4 receptor. J Med Chem 54:4018–4033

    Article  PubMed  CAS  Google Scholar 

  51. Kalla RV, Zablocki J, Tabrizi MA, Baraldi PG (2009) Recent developments in A2B adenosine receptor ligands. In: HEP adenosine receptors in health and disease, Springer, Wilson C, Mustafa J (eds) Handb Exp Pharmacol 193:99–121

  52. Baraldi PG, Tabrizi MA, Fruttarolo F, Romagnoli R, Preti D (2010) Recent improvements in the development of A2B adenosine receptor agonists. Purinergic Signal 5:3–19

    Article  CAS  Google Scholar 

  53. Bauer A, Ishiwata K (2009) Adenosine receptor ligands and PET imaging of the CNS. Handb Exp Pharmacol 193:617–642

    Article  PubMed  CAS  Google Scholar 

  54. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nature Rev Drug Disc 5:247–264

    Article  CAS  Google Scholar 

  55. Müller C, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. BBA—Biomembranes 1808:1290–1308

    Article  PubMed  CAS  Google Scholar 

  56. Kiesman WF, Elzein E, Zablocki J (2009) A1 adenosine receptor antagonists, agonists, and allosteric enhancers. Handb Exp Pharmacol 193:25–58

    Article  PubMed  CAS  Google Scholar 

  57. Elzein E, Zablocki J (2008) A1 adenosine receptor agonists and their potential therapeutic applications. Expert Opin Investig Drugs 17:1901–1910

    Article  PubMed  CAS  Google Scholar 

  58. Wang Z, Do CW, Avila MY, Peterson-Yatorno K, Stone RA, Gao ZG, Joshi BV, Besada P, Jeong LS, Jacobson KA, Civan MM (2010) Nucleoside-derived antagonists to A3 adenosine receptors lower mouse intraocular pressure and act across species. Exp Eye Res 90:146–154

    Article  PubMed  CAS  Google Scholar 

  59. Franchetti P, Cappellacci L, Vita P, Petrelli R, Lavecchia A, Kachler S, Klotz KN, Marabese I, Luongo L, Maione S, Grifantini M (2009) N 6-Cycloalkyl- and N 6-bicycloalkyl-C5′(C2′)-modified adenosine derivatives as high-affinity and selective agonists at the human A1 adenosine receptor with antinociceptive effects in mice. J Med Chem 52:3430–3430

    Article  CAS  Google Scholar 

  60. van der Wenden EM, Carnielli M, Roelen HCPF, Lorenzen A, von Frijtag Drabbe Künzel JK, IJzerman AP (1998) Ribose-modified adenosine analogs as potential partial agonists for the adenosine receptor. J Med Chem 41:102–108

    Article  PubMed  Google Scholar 

  61. Jacobson KA, Klutz AM, Tosh DK, Ivanov AA, Preti D, Baraldi PG (2009) Medicinal chemistry of the A3 adenosine receptor: agonists, antagonists, and receptor engineering. In: HEP adenosine receptors in health and disease, Springer, WilsonC, Mustafa J (eds) Handb Exp Pharmacol 193:123–159

  62. van der Horst E, van der Pijl R, Mulder-Krieger T, Bender A, IJzerman AP (2011) Substructure-based virtual screening for adenosine A2A receptor ligands. Chem Med Chem 6:2301–2311

    Google Scholar 

  63. Brunschweiger A, Müller CE (2006) P2 receptors activated by uracil nucleotides—an update. Curr Med Chem 13:289–312

    Article  PubMed  CAS  Google Scholar 

  64. Robichaud J, Fournier JF, Gagne S, Gauthier JY, Hamel M, Han Y, Hénault M, Kargman S, Levesque JF, Mamane Y, Mancini J, Morin N, Mulrooney E, Wu J, Black WC (2011) Applying the pro-drug approach to afford highly bioavailable antagonists of P2Y14. Bioorg Med Chem Lett 21:4366–4368

    Article  PubMed  CAS  Google Scholar 

  65. Chhatriwala M, Ravi RG, Patel RI, Boyer JL, Jacobson KA, Harden TK (2004) Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analogue. J Pharm Exp Therap 311:1038–1043

    Article  CAS  Google Scholar 

  66. Yelovitch S, Camden J, Weisman GA, Fischer B (2012) Boranophosphate isoster controls P2Y-receptor subtype selectivity and metabolic stability of dinucleoside polyphosphate analogues. J Med Chem 55:437-448

    Google Scholar 

  67. Cattaneo M, Lecchi A, Joshi BV, Ohno M, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, Jacobson KA (2004) Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor. Biochem Pharmacol 68:1995–2002

    Article  PubMed  CAS  Google Scholar 

  68. Pfefferkorn JA, Choi C, Winters T, Kennedy R, Chi L, Perrin LA, Ping YW, McClanahan T, Schroeder R, Leininger MT, Geyer A, Schefzick S, Atherton J (2008) P2Y1 receptor antagonists as novel antithrombotic agents. Bioorg Med Chem Lett 18:3338–3343

    Article  PubMed  CAS  Google Scholar 

  69. Eliahu S, Barr HM, Camden J, Weisman GA, Fischer B (2010) A novel insulin secretagogue based on a dinucleoside polyphosphate scaffold. J Med Chem 53:2472–2481

    Article  PubMed  CAS  Google Scholar 

  70. Jacobson KA, Boeynaems J-M (2010) P2Y nucleotide receptors: promise of therapeutic applications. Drug Disc Today 15:570–578

    Article  CAS  Google Scholar 

  71. Harden TK, Sesma JI, Fricks IP, Lazarowski ER (2010) Signaling and pharmacological properties of the P2Y14 receptor. Acta Physiol 199:149–160

    Article  CAS  Google Scholar 

  72. Meis S, Hamacher A, Hongwiset D, Marzian C, Wiese M, Eckstein N, Royer HD, Communi D, Boeynaems JM, Hausmann R, Schmalzing G, Kassack MU (2010) NF546 [4,4′-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha, alpha′-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells. J Pharm Exp Therap 332:238–247

    Article  CAS  Google Scholar 

  73. Felix R, Martin S, Pinion S, Crawford DJ (2012) Development of a comprehensive set of P2 receptor pharmacological research compounds. Purinerg Signal 8(Suppl 1):101–112

    Google Scholar 

  74. Zhao J, Du Y, Horton JR, Upadhyay AK, Lou B, Bai Y, Zhang X, Du L, Li M, Wang B, Zhang L, Barbieri JT, Khuri FR, Cheng X, Fu H (2011) Discovery and structural characterization of a small molecule 14-3-3 protein–protein interaction inhibitor. Proc Natl Acad Sci USA 108:16212–16216

    Article  PubMed  CAS  Google Scholar 

  75. Jacobson KA, Gao ZG, Göblyös A, Ijzerman AP (2011) Allosteric modulators of purine and pyrimidine receptors. Adv Pharmacol 61:187–221

    Article  PubMed  CAS  Google Scholar 

  76. Welihinda AA, Amento EP (2011) Functional characterization of an allosteric enhancer of the adenosine A2a receptor that inhibits pro-inflammatory cytokine production. [abstract]. Arthritis Rheum 63(Suppl10):1812

    Google Scholar 

  77. Gessi S, Merighi S, Varani K, Borea PA (2011) Adenosine receptors in health and disease. Adv Pharmacol 61:41–75

    Article  PubMed  CAS  Google Scholar 

  78. Erlinge D (2011) P2Y receptors in health and disease. Adv Pharmacol 61:417–439

    Article  PubMed  CAS  Google Scholar 

  79. Cristalli G, Müller CE, Volpini R (2009) Recent developments in adenosine A2A receptor ligands. Handb Exp Pharmacol 193:59–98

    Article  PubMed  CAS  Google Scholar 

  80. Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today. doi:10.1016/j.drudis.2011.10.007

  81. Koeppen M, Eckle T, Eltzschig HK (2011) Interplay of hypoxia and A2B adenosine receptors in tissue protection. Adv Pharmacol 61:145–186

    Article  PubMed  CAS  Google Scholar 

  82. Feoktistov I, Biaggioni I (2011) Role of adenosine A2B receptors in inflammation. Adv Pharmacol 61:115–144

    Article  PubMed  CAS  Google Scholar 

  83. Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed  CAS  Google Scholar 

  84. Field JJ, Nathan DG, Linden J (2011) Targeting iNKT cells for the treatment of sickle cell disease. Clin Immunol 140:177–183

    Article  PubMed  CAS  Google Scholar 

  85. Albrecht-Küpper BE, Leineweber K, Nell PG (2012) Partial adenosine A1 receptor agonists for cardiovascular therapies. Purinergic Signal 8(Suppl 1):S91–S99

    Google Scholar 

  86. Morello S, Sorrentino R, Pinto A (2009) Adenosine A2a receptor agonists as regulators of inflammation: pharmacology and therapeutic opportunities. J Receptor Ligand Channel Res 2:11–17

    CAS  Google Scholar 

  87. Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta 1808:1329–1339

    Article  PubMed  CAS  Google Scholar 

  88. Feoktistov I, Biaggioni I, Cronstein BN (2009) Adenosine receptors in wound healing, fibrosis and angiogenesis. Handb Exp Pharmacol 193:383–397

    Article  PubMed  CAS  Google Scholar 

  89. Cronstein BN (2011) Adenosine receptors and fibrosis: a translational review. F1000 Biology Reports 3:21

    Google Scholar 

  90. Koupenova M, Johnson-Cox H, Vezeridis A, Gavras H, Yang D, Zannis V, Ravid K (2012) The A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation 125:354–363

    Google Scholar 

  91. Shook BC, Jackson PF (2011) Adenosine A2A receptor antagonists and Parkinson’s disease. ACS Chem Neurosci 2:555–567

    Article  CAS  Google Scholar 

  92. Ohta A, Sitkovsky M (2011) Methylxanthines, inflammation, and cancer: fundamental mechanisms. Handb Exp Pharmacol 200:469–481

    Article  PubMed  CAS  Google Scholar 

  93. von Kügelgen I, Harden TK (2011) Molecular pharmacology, physiology, and structure of the P2Y receptors. Adv Pharmacol 61:373–415

    Article  CAS  Google Scholar 

  94. Lämmer AB, Beck A, Grummich B, Förschler A, Krügel T, Kahn T, Schneider D, Illes P, Franke H, Krügel U (2011) The P2 receptor antagonist PPADS supports recovery from experimental stroke in vivo. PLoS One 6:e19983

    Article  PubMed  CAS  Google Scholar 

  95. Balasubramanian R, Ruiz de Azua I, Wess J, Jacobson KA (2010) Activation of distinct P2Y receptor subtypes stimulates insulin secretion and cytoprotection in MIN6 mouse pancreatic β cells. Biochem Pharmacol 79:1317–1326

    Article  PubMed  CAS  Google Scholar 

  96. Tan C, Salehi A, Svensson S, Olde B, Erlinge D (2010) ADP receptor P2Y13 induce apoptosis in pancreatic beta-cells. Cell Mol Life Sci 67:445–453

    Article  PubMed  CAS  Google Scholar 

  97. Franke H, Krügel U, Illes P (2006) P2 receptors and neuronal injury. Pflugers Arch 452:622–644

    Article  PubMed  CAS  Google Scholar 

  98. Wei Q, Costanzi S, Liu QZ, Gao ZG, Jacobson KA (2011) Activation of the P2Y1 receptor induces apoptosis and inhibits proliferation of prostate cancer cells. Biochem Pharmacol 82:418–425

    Article  PubMed  CAS  Google Scholar 

  99. Hechler B, Freund M, Ravanat C, Magnenat S, Cazenave JP, Gachet C (2008) Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors. Circulation 118:754–763

    Article  PubMed  CAS  Google Scholar 

  100. Gendaszewska-Darmach E, Kucharska M (2011) Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal 7:193–206

    Article  PubMed  CAS  Google Scholar 

  101. Cohen R, Shainberg A, Hochhauser E, Cheporko Y, Tobar JA, Birk E, Pinhas L, Leipziger J, Don J, Porat E (2011) UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor. Biochem Pharmacol 82:1126–1133

    Article  PubMed  CAS  Google Scholar 

  102. Ghanem E, Robaye B, Leal T, Leipziger J, Van Driessche W, Beauwens R, Boeynaems JM (2005) The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol 146:364–369

    Article  PubMed  CAS  Google Scholar 

  103. Sassmann A, Gier B, Gröne HJ, Drews G, Offermanns S, Wettschureck N (2010) The Gq/G11-mediated signaling pathway is critical for autocrine potentiation of insulin secretion in mice. J Clin Invest 120:2184–2193

    Article  PubMed  CAS  Google Scholar 

  104. Riegel AK, Faigle M, Zug S, Rosenberger P, Robaye B, Boeynaems JM, Idzko M, Eltzschig HK (2011) Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood 117:2548–2555

    Article  PubMed  CAS  Google Scholar 

  105. Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Robaye B (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol 166:7172–7177

    PubMed  CAS  Google Scholar 

  106. Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K (2008) P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28:4949–4956

    Article  PubMed  CAS  Google Scholar 

  107. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a novel mediator of microglial phagocytosis. Nature 446:1091–1095

    Article  PubMed  CAS  Google Scholar 

  108. Boeynaems JM, Sirtori CR (2010) The unexpected roles of extracellular ADP and P2Y13 receptor in reverse cholesterol transport. Purinergic Signal 6:361–363

    Article  PubMed  CAS  Google Scholar 

  109. Zippel N, Limbach CA, Ratajski N, Urban C, Pansky A, Luparello C, Kassack MU, Tobiasch E (2011) Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev. doi:10.1089/scd.2010.0576

  110. Zhang X, Alagille D, Koren AO, Cosgrove K, Seibyl JP, Batis JC, Tamagnan GD (2009) Synthesis of a small library of A2A receptor antagonists for PET/SPECT imaging and in vivo evaluation of [123I]-MNI-420 in nonhuman primate. ACS 238th Natl Meeting, Abstr. MEDI469, Aug. 2009, Washington DC

  111. Cohen MV, Yang X, Downey JM (2010) A2b adenosine receptors can change their spots. Br J Pharmacol 159:1595–1597

    Article  PubMed  CAS  Google Scholar 

  112. Feoktistov I, Goldstein AE, Biaggioni I (1999) Role of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinase kinase in adenosine A2B receptor-mediated interleukin-8 production in human mast cells. Mol Pharmacol 55:726–734

    PubMed  CAS  Google Scholar 

  113. Gao Z, Chen T, Weber MJ, Linden J (1999) A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. Cross-talk between cyclic AMP and protein kinase c pathways. J Biol Chem 274:5972–5980

    Article  PubMed  CAS  Google Scholar 

  114. Linden J, Auchampach JA, Jin X, Figler RA (1998) The structure and function of A1 and A2B adenosine receptors. Life Sci 62:1519–1524

    Article  PubMed  CAS  Google Scholar 

  115. Ryzhov S, Goldstein AE, Biaggioni I, Feoktistov I (2006) Cross-talk between Gs- and Gq-coupled pathways in regulation of interleukin-4 by A2B adenosine receptors in human mast cells. Mol Pharmacol 70:727–735

    Article  PubMed  CAS  Google Scholar 

  116. Rieger JM, Brown ML, Sullivan GW, Linden J, Macdonald TL (2001) Design, synthesis, and evaluation of novel A2A adenosine receptor agonists. J Med Chem 44:531–539

    Article  PubMed  CAS  Google Scholar 

  117. Baraldi PG, Baraldi S, Saponaro G, Preti D, Romagnoli R, Piccagli L, Cavalli A, Recanatini M, Moorman AR, Zaid AN, Katia Varani KA, Borea PA, Tabrizi MA (2012) Novel 1,3-dipropyl-8-(3-benzimidazol-2-yl-methoxy-1-methylpyrazol-5-yl)xanthines as potent and selective A2B adenosine receptor antagonists. J Med Chem 55:797–811

    Article  PubMed  CAS  Google Scholar 

  118. Ivanov AA, Wang B, Klutz AM, Chen VL, Gao ZG, Jacobson KA (2008) Probing distal regions of the A2B adenosine receptor by quantitative structure–activity relationship modeling of known and novel agonists. J Med Chem 51:2088–2099

    Article  PubMed  CAS  Google Scholar 

  119. Fossa P, Pestarino M, Menozzi G, Mosti L, Schenone S, Ranise A, Bondavalli F, Trincavelli ML, Lucacchini A, Martini C (2005) New pyrazolo[3,4-b]pyridones as selective A1 adenosine receptor antagonists: synthesis, biological evaluation and molecular modelling studies. Org Biomol Chem 3:2262–2270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the NIDDK Intramural Research Program, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, K.A., Balasubramanian, R., Deflorian, F. et al. G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signalling 8, 419–436 (2012). https://doi.org/10.1007/s11302-012-9294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9294-7

Keywords

Navigation