Skip to main content
Log in

Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Global transcriptional regulation during apple fruit maturation and associated texture changes were assessed by transcriptome profiling and systematic characterization of maturation progression of two cultivars, ‘Honeycrisp’ (HC) and ‘Cripps Pink’ (CP). A high-density long-oligo apple microarray consisting of duplex 190,135 cross-hybridization-free 50–70-mer isothermal probes, representing 23,997 unigenes, was designed for and manufactured on a NimbleGen array platform. Cortex tissues from both HC and CP at three maturation stages, i.e., 4, 2, and 0 week(s) before physiological maturity, were utilized for transcriptome profiling. A total of 1,793 and 1,209 differentially expressed unigenes, 7.47 % and 5.04 % of all unigenes deposited on the array, were identified from HC and CP, respectively. Unigenes associated with ethylene biosynthesis and response, auxin homeostasis and transport, gibberellin reception and metabolism as well as degradation of hemicelluloses may contribute to the observed phenotypic variations in apple maturation patterns and texture attributes such as fruit firmness and crispness. Microarray data validation indicated that more than 85 % of randomly selected unigenes showed consistent expression patterns with qRT-PCR results. Physiological characterization demonstrated substantial differences in maturation progression between these two cultivars, and a remarkable transformation in fruit texture occurred from week −4 to week 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Argenta L, Fan X, Mattheis J (2002) Responses of ‘Fuji’ apples to short and long duration exposure to elevated CO2 concentration. Postharv Biol Tech 24:13–24

    Article  CAS  Google Scholar 

  • Atkinson RG, Johnston SL, Yauk Y-K, Sharma NN, Schröder R (2009) Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharv Biol Technol 51:149–157

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodological) 57:289–300

    Google Scholar 

  • Bennett AB, Labavitch JM (2008) Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins. Plant Sci 175:130–136

    Article  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007) GenBank. Nucleic Acids Res 35:D21–D25

    Article  PubMed  CAS  Google Scholar 

  • Blanpied GD, Silsby KJ (1992) Predicting harvest date windows for apples. Cornell Coop Ext Publ Inform Bul 221:12

    Google Scholar 

  • Bleecker A, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Brookfield P, Murphy P, Harker R, MacRae E (1997) Starch degradation and starch pattern indices; interpretation and relationship to maturity. Postharv Biol Technol 11:23–30

    Article  CAS  Google Scholar 

  • Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119

    Article  CAS  Google Scholar 

  • Brummell D, Harpster M (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler G (2002) Mutants at Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190

    Article  PubMed  CAS  Google Scholar 

  • Costa FS, Sara W, Van de Weg E, Guerra W, Cecchinel M, Dallivina J, Koller B, Sansivini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Costa F, Alba R, Schouten H, Soglio V, Gianfranceschi L, Serra S, Musacchi S, Sansavini S, Costa G, Fei Z, Giovannoni J (2010) Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC Plant Biol 10:229

    Article  PubMed  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  PubMed  CAS  Google Scholar 

  • Dotto MC, Martínez GA, Civello PM (2006) Expression of expansin genes in strawberry varieties with contrasting fruit firmness. Plant Physiol Biochem 44:301–307

    Article  PubMed  CAS  Google Scholar 

  • Evans K, Brutcher L, Konishi B, Barritt B (2010) Correlation of sensory analysis with physical textural data from a computerized penetrometer in the Washington State University apple breeding program. HortScience 20:1026–1029

    Google Scholar 

  • Falara V, Manganaris GA, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis AK (2011) A β-D: -xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Funct Integr Genomics 11:357–368

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Mattheis JP, Fellman JK (1998) A role for jasmonates in climacteric fruit ripening. Planta 204:444–449

    Article  CAS  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo S-D, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin–protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101:6803–6808

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Hernandez A, Korban S (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Report 22:437a–437g

    Article  Google Scholar 

  • Giovannoni J (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–180

    Article  Google Scholar 

  • Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746

    Article  CAS  Google Scholar 

  • Harker RR, Redgwell RJ, Hallett IC, Murray SH (1997) Texture of fresh fruit. Hortic Rev 20:121–224

    Google Scholar 

  • Hou B, Lim E-K, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16

    Article  PubMed  Google Scholar 

  • Jensen PJ, Makalowska I, Altman N, Fazio G, Praul C, Maximova SN, Crassweller RM, Travis JW, McNellis TW (2010) Rootstock-regulated gene expression patterns in apple tree scions. Tree Genet Genome 6:57–72

    Article  Google Scholar 

  • Johnston JW, Hewett EW, Hertog MLATM (2002) Postharvest softening of apple (Malus domestica) fruit: a review. N Z J Crop Hortic Sci 30:145–160

    Article  Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36:D1034–D1040

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    Article  PubMed  CAS  Google Scholar 

  • Kondo S, Meemak S, Ban Y, Moriguchi T, Harada T (2009) Effects of auxin and jasmonates on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression during ripening of apple fruit. Postharv Biol Tech 51:281–284

    Article  CAS  Google Scholar 

  • Kuppusamy KT, Walcher CL, Nemhauser JL (2009) Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 69:375–381

    Article  PubMed  CAS  Google Scholar 

  • Lee YP, Yu GH, Seo YS, Han SE, Choi YO, Kim D, Mok IG, Kim WT, Sung SK (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yuan R (2008) NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Delicious’ apples. J Plant Growth Regul 27:283–295

    Article  CAS  Google Scholar 

  • Mann HS, Alton JJ, Kim S, Tong CBS (2008) Differential expression of cell-wall-modifying genes and novel cDNA in apple fruit during storage. J Am Soc Hortic Sci 133:153–164

    Google Scholar 

  • Marín-Rodríguez MC, Orchard J, Seymour GB (2002) Pectate lyases, cell wall degradation and fruit softening. J Exp Bot 53:2115–2119

    Article  PubMed  Google Scholar 

  • Mazzola M, White FF (1994) A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol 176:1374–1382

    PubMed  CAS  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A et al (2007) New developments in the InterPro database. Nucleic Acids Res 35:D224–D228

    Article  PubMed  CAS  Google Scholar 

  • Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–950

    Article  PubMed  CAS  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    PubMed  CAS  Google Scholar 

  • Oraguzie NC, Iwanami H, Soejima J, Harada T, Hall A (2004) Inheritance of Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theor Appl Genet 108:1526–1533

    Article  PubMed  CAS  Google Scholar 

  • Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824

    Article  PubMed  CAS  Google Scholar 

  • Penning BW, Hunter CT III, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC (2009) Genetic resources for maize cell wall biology. Plant Physiol 151:1703–1728

    Article  PubMed  CAS  Google Scholar 

  • Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wiśniewska J, Tadele Z, Kubeš M, Čovanová M, Dhonukshe P, Skůpa P, Benková E, Perry L, Křeček P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zažímalová E, Friml J (2006) PIN protein perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulations. Plant Physiol 130:1908–1917

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G-L (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Rosenfield CL, Kiss E, Hrazdina G (1996) Md-ACS-2 (accession no. U73815) and Md-ACS-3 (accession no. U73816): two new 1-aminocyclopropane-1-carboxylate synthases in ripening apple fruit (PGR96–122). Plant Physiol 112:1735

    Article  Google Scholar 

  • Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO, Benfey PN (2005) COBRA, an Arabidopsis extracellular glycosylphosphatidylinositol-anchored protein specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17:1749–1763

    Article  PubMed  CAS  Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma JH, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao JL, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912

    Article  PubMed  CAS  Google Scholar 

  • Schmuelling T, Werner T, Riefler M, Krupkova E, Bartrina Y, Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252

    Article  CAS  Google Scholar 

  • Seymour G, Manning K, Eriksson E, Popovich A, King G (2002) Genetic identification and genomic organization of factors affecting fruit texture. J Exp Bot 53:2065–2071

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H (2008) Ethylene-regulated transcription and crosstalk with jasmonic acid. Plant Sci 175:18–23

    Article  CAS  Google Scholar 

  • Spartz AK, Gray WM (2008) Plant hormone receptors: new perceptions. Gene Dev 22:2139–2148

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  PubMed  CAS  Google Scholar 

  • Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T-Y, Hsing Y-I, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE WARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Van Der Straeten D (2007) One for all and all for one: cross-talk of multiple signals controlling the plant phenotype. J Plant Growth Regul 26:178–187

    Article  CAS  Google Scholar 

  • Varanasi V, Mattheis JP, Rudell D, Zhu Y (2011) Expression profiles of MdACS3 gene suggest function as an accelerator of apple (Malus × domestica) fruit ripening. Postharvest Biol Technol 62:141–148

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Verica JA, Chae L, Tong H, Ingmire P, He Z-H (2003) Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. Plant Physiol 133:1732–1746

    Article  PubMed  CAS  Google Scholar 

  • Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 10:423

    Article  PubMed  Google Scholar 

  • Wakasa Y, Kudo H, Ishikawa R, Akada S, Senda M, Niizeki M, Harada T (2006) Low expression of an endopolygalacturonase gene in apple fruit with long-term storage potential. Postharv Biol Tech 39:193–198

    Article  CAS  Google Scholar 

  • Wiersma PA, Zhang H, Lu C, Quail A, Toivonen PMA (2007) Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of ‘Sunrise’ and ‘Golden Delicious’ apple fruit. Postharv Biol Technol 44:204–211

    Article  CAS  Google Scholar 

  • Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Mazumder R, O'Donovan C, Redaschi N, Suzek B (2006) The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–D191

    Article  PubMed  CAS  Google Scholar 

  • Yong W, O’Malley R, Link B, Binder B, Bleecker A, Koch KE, McCann MC, McCarty DR, Patterson S, Reiter WD et al (2005) Genomics of plant cell wall biosynthesis. Planta 221:747–751

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Nagata M, Saito K, Wang KLC, Ecker JR (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol 5:14

    Article  PubMed  Google Scholar 

  • Zhu Y, Barritt BH (2008) Apple cultivar genotypes for Md-ACS1 and Md-ACO1 ethylene production genes and implications for breeding. Tree Genet Genome 4:555–562

    Article  Google Scholar 

  • Zhu Y, Rudell D, Mattheis JP (2008) Characterization of cultivar differences in alcohol acyltransferase and 1-aminocyclopropane-1-carboxylate synthase gene expression and volatile ester emission during apple fruit maturation and ripening. Postharv Biol Technol 49:330–339

    Article  CAS  Google Scholar 

  • Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781–2791

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ann Callahan, Chris Dardick, Cindy Tong, and Tianbao Yang for their helpful comments. The authors wish to thank Xia Rui for preparation of Table S1 and Table S2. We wish to thank Mallela Magana, Janie Countryman, Edward Valdez, and Bruce Mackey for their contribution in fruit harvest, maturity test, tissue collection, and other excellent technical assistance. This study was supported by Washington Tree Fruit Research Commission and USDA base fund.

The authors declare that the experiments comply with the current laws of USA. All authors read and approved the final manuscript, and declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Zhu.

Additional information

Communicated by A. Dandekar

Yanmin Zhu and Ping Zheng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Overall distribution of identified unigenes in major functional categories. a Distribution of different expression patterns among identified unigenes. Column with green color represented those identified from HC, and column with pink color was from CP. Values of Y-axis indicated the numbers of unigenes. X-axis indicates four different expression patterns for both cultivars. Refer to Tables 3, 4, and S1, S2, S3 and S4 for detailed information of individual unigenes. b Cultivar specificity of identified unigenes implicated in plant hormone metabolism and responses. c Cultivar specificity of unigenes implicated in cell wall metabolisms. d Cultivar specificity of TF-encoding unigenes. In (b), (c), and (d), Y-axis showed the numbers of up- or down-regulated values (all unigenes have two values of fold change). Column with blue color represented those identified with up-regulated expression pattern, and column with red color represented those identified with down-regulated expression pattern (JPEG 105 kb)

High resolution image (TIFF 309 kb)

Fig. S2

Cultivar-specific expression patterns for unigenes in plant hormone functions. a Unigenes implicated in ethylene metabolism and response. b Unigenes implicated in auxin metabolism, transport, and response. c Unigenes implicated in GA metabolism and response. d Unigenes implicated in the metabolism and response of other plant hormones. Y-axis showed the up- or down-regulated values of identified unigenes (all unigenes have two values of fold changes). Column with blue color represented those identified with up-regulated expression pattern, and column with red color represented those identified with up-regulated expression pattern (JPEG 90 kb)

High resolution image (TIFF 261 kb)

Fig. S3

Cultivar-specific expression patterns for unigenes in carbohydrate metabolism and cell wall modification. a Unigenes encoding glycosyl transferase (GT). b Unigenes encoding glycosyl hydrolase (GH). c Unigenes encoding polysaccharide lyase and carbohydrate esterase. d Unigenes encoding expansin and other cell wall proteins. Y-axis showed the number of either up- or down-regulated values (all unigenes have two values of fold changes). Column with blue color represented those identified with up-regulated expression pattern, and column with red color represented those identified with up-regulated expression pattern (JPEG 93 kb)

High resolution image (TIFF 260 kb)

Fig. S4

Cultivar-specific expression patterns of unigenes encoding TFs. a Unigenes encoding transcription factors which specifically respond to ethylene. b Unigenes encoding transcription factors which specifically respond to auxin. c Unigenes encoding transcription factors belong to other TF families. Y-axis showed the number of either up- or down-regulated value (all unigenes have two values of fold changes). In (b) and (c), column with blue color represented those identified with up-regulated expression pattern, and column with red color represented those identified with up-regulated expression pattern (JPEG 90 kb)

High resolution image (TIFF 206 kb)

Fig. S5

Relative expression level of randomly selected unigenes by qRT-PCR. Bars represent normalized values of qRT-PCR assay; two independent RNA samples were used in separated cDNA synthesis and PCR reactions were repeated twice in triplicates for each cDNA. Y-axis indicated the relative gene expression, and X-axis showed samples at different maturation stages. Names of the selected unigenes were placed at the top of each square. Values at the bottom of each square were the fold changes based from microarray dataset one for between week −4 and week −2 and another for week −2 to week 0. Numbers highlighted in red color represented the consistent gene expression patterns between microarray analysis and qRT-PCR assay, while those highlighted in blue color represented inconsistent patterns between two methods. HC ‘Honeycrisp’, CP ‘Cripps Pink’ (JPEG 896 kb)

High resolution image (TIFF 1512 kb)

Table S1

Visual representation of differentially expressed unigenes with the annotated function in plant hormone metabolism and responses (DOC 503 kb)

Table S2

Visual representation of differentially expressed unigenes with the annotated function in cell wall metabolism and modification (DOC 604 kb)

Table S3

Differentially expressed transcription factor encoding unigenes (DOC 280 kb)

Table S4

Differentially expressed unigenes with other annotated molecular functions (XLS 70 kb)

Table S5

Primer sequences used for data validation by qRT-PCR (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Zheng, P., Varanasi, V. et al. Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes. Tree Genetics & Genomes 8, 1389–1406 (2012). https://doi.org/10.1007/s11295-012-0526-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0526-3

Keywords

Navigation