Skip to main content
Log in

Time-Domain SI Estimation for SLM Based OFDM Systems Without SI Transmission

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Side information (SI) detection is normally needed to achieve successful data reception when selected mapping is implemented for reducing peak-to-average power ratio in orthogonal frequency division multiplexing systems. In severe frequency selective channel fading, existing pilot-assisted SI estimation schemes are ineffective especially when the number of pilots is limited, resulting in performance degradation in the form of increased BER. To address this problem, an alternative pilot-assisted SI estimation method based on a time-domain decision metric is proposed. Simulations show that when compared to a pilot-assisted SI estimation scheme based on frequency domain correlation, the proposed method provides improved SI estimation performance in the form of reduced SI detection error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miridakis, N. I., & Vergados, D. D. (2013). A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems. IEEE on Communications Surveys Tutorials, 15(1), 312–335.

    Article  Google Scholar 

  2. Armstrong, J. (2009). OFDM for optical communications. Journal of Lightwave Technology, 27(3), 189–204.

    Article  Google Scholar 

  3. Adegbite, S., Stewart, B. G., & McMeekin, S. G. (2013). Least Squares interpolation methods for LTE system channel estimation over extended ITU channels. International Journal of Information and Electronics Engineering, 3(4), 414–418.

    Google Scholar 

  4. Alsusa, E., & Yang, L. (2008). Redundancy-free and BER-maintained selective mapping with partial phase-randomising sequences for peak-to-average power ratio reduction in OFDM systems. IET Communications, 2(1), 66–74.

    Article  Google Scholar 

  5. Adegbite, S.A., McMeekin, S.G., & Stewart, B.G. (2014). Deterministic Sequences From a Fibonacci Series For PAPR Reduction in SLM-OFDM Systems. In: Proceedings of the 2014 Europment International Conference on Communications, Signal Processing and Computers (CSPC), Interlaken (pp. 54–59).

  6. Bumman, K., Junghwan, M., & Ildu, K. (2010). Efficiently amplified. IEEE Microwave Magazine, 11(5), 87–100.

    Article  Google Scholar 

  7. Baig, I., & Jeoti, V. (2013). A ZCMT precoding based multicarrier OFDM system to minimize the high PAPR. Wireless Personal Communications, 68(3), 1135–1145.

    Article  Google Scholar 

  8. Lee, B. M., de Figueiredo, R. J., & Kim, Y. (2012). A computationally efficient tree-PTS technique for PAPR reduction of OFDM signals. Wireless Personal Communications, 62(2), 431–442.

    Article  Google Scholar 

  9. Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268.

    Article  Google Scholar 

  10. Lim, D.-W., Heo, S.-J., & No, J.-S. (2009). An overview of peak-to-average power ratio reduction schemes for OFDM signals. Journal of Communications and Networks, 11(3), 229–239.

    Article  Google Scholar 

  11. Rahmatallah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE on Communications Surveys Tutorials, 15(4), 1567–1592.

    Article  Google Scholar 

  12. Baxley, R., & Zhou, G. (2007). Comparing selected mapping and partial transmit sequence for PAR reduction. IEEE Transactions on Broadcasting, 53(4), 797–803.

    Article  Google Scholar 

  13. Hasan, M. M. (2013). VLM precoded SLM technique for PAPR reduction in OFDM systems. Wireless Personal Communications, 73(3), 791–801.

    Article  Google Scholar 

  14. Jayalath, A. D. S., & Tellambura, C. (2005). SLM and PTS peak-power reduction of OFDM signals without side information. IEEE Transactions on Wireless Communications, 4(5), 2006–2013.

    Article  Google Scholar 

  15. Le Goff, S. Y., Al-Samahi, S. S., Khoo, B. K., Tsimenidis, C. C., & Sharif, B. S. (2009). Selected mapping without side information for PAPR reduction in OFDM. IEEE Transactions on Wireless Communications, 8(7), 3320–3325.

    Article  Google Scholar 

  16. Park, J., Hong, E., & Har, D. (2011). Low complexity data decoding for SLM-based OFDM systems without side information. IEEE on Communications Letters, 15(6), 611–613.

    Article  Google Scholar 

  17. Hong, E., Kim, H., Yang, K., & Har, D. (2013). Pilot-aided side information detection in SLM-based OFDM systems. IEEE Transactions on Wireless Communications, 12(7), 3140–3147.

    Article  Google Scholar 

  18. Bauml, R. W., Fischer, R. F. H., & Huber, J. B. (1996). Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters, 32(22), 2056–2057.

    Article  Google Scholar 

  19. Peled, A., & Ruiz, A. (1980). Frequency domain data transmission using reduced computational complexity algorithms. IEEE International Conference on ICASSP ’80 Acoustics, Speech, and Signal Processing, 5, 964–967.

    Article  Google Scholar 

  20. Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. Hoboken: Wiley.

    Book  Google Scholar 

  21. Adegbite, S. A., McMeekin, S. G., & Stewart, B. G. (2014). Low-complexity data decoding using binary phase detection in SLM-OFDM systems. Electronics Letters, 50(7), 560–562.

    Article  Google Scholar 

  22. Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90), 297–301.

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson, S. G., & Frigo, M. (2007). A modified split-radix FFT with fewer arithmetic operations. IEEE Transactions on Signal Processing, 55(1), 111–119.

    Article  MathSciNet  Google Scholar 

  24. Failli, M. (1989). Digital land mobile radio communications COST 207, ETSI, Technical Report, European Commission.

  25. 3GPP Technical Specification (TS) 36.101 v12.0.0. (2013). Evolved Universal Terrestrial Radio Access (EUTRA); User Equipment (UE) Radio Transmission and Reception (Release 12).

  26. 3GPP Technical Specification (TS) 36.211 v12.0.0. (2013). Evolved Universal Terrestrial Radio Access (EUTRA); Physical Channels and Modulation (Release 12).

  27. 3GPP Technical Specification (TS) 36.212 v12.0.0. (2013). Evolved Universal Terrestrial Radio Access (EUTRA); Multiplexing and Channel Coding (Release 12).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saheed A. Adegbite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adegbite, S.A., McMeekin, S.G. & Stewart, B.G. Time-Domain SI Estimation for SLM Based OFDM Systems Without SI Transmission. Wireless Pers Commun 85, 1193–1203 (2015). https://doi.org/10.1007/s11277-015-2834-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2834-z

Keywords

Navigation