Skip to main content

Advertisement

Log in

Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the antifouling secondary metabolites from marine-derived fungi, we used bioassay-guided column chromatography techniques, such as HPLC, to separate and purify compounds from Cladosporium sp. F14. Extensive spectral analyses including 1D NMR spectra and MS were employed for structure elucidation of the compounds. Antilarval activity of the compounds was evaluated in settlement inhibition assays with laboratory-reared Balanus amphitrite and Bugula neritina larvae, while antibacterial activity was assessed with disc diffusion bioassay on growth inhibition of six marine bacterial species. In total, nine compounds were obtained. Among them, 3-phenyl-2-propenoic acid, cyclo-(Phe-Pro) and cyclo-(Val-Pro) had various antibacterial activities against three fouling bacteria, furthermore, 3-phenyl-2-propenoic acid and bis(2-ethylhexyl)phthalate effectively inhibited larval settlement of B. neritina and B. amphitrite larvae, respectively, indicating that the two compounds are potential natural antifouling agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acar JF (1980) The disc susceptibility test. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore, pp 24–54

    Google Scholar 

  • Adamczeski M, Reed AR, Crews P (1995) New and known diketopiperazines from the Caribbean sponge, Calyx cf. podatypa. J Nat Prod 58(2):201–208. doi:10.1021/np50116a007

    Article  CAS  Google Scholar 

  • Alzieu C (2000) Impact of tributyltin on marine invertebrates. Ecotoxicology 9:71–76. doi:10.1023/A:1008968229409

    Article  CAS  Google Scholar 

  • Amade P, Mallea M, Bouaicha N (1994) Isolation, structural identification and biological activity of two metabolites produced by Penicillium olsomii Bainier and Sartory. J Antibiot (Tokyo) 47:201–207

    CAS  Google Scholar 

  • Bae EA, Han MJ, Kim NJ, Kim DH (1998) Anti-Helicobacter pylori activity of herbal medicines. Biol Pharm Bull 21:990–992

    CAS  Google Scholar 

  • Barnes CC, Smalley MK, Manfredi KP, Kindscher K, Loring H, Sheeley DM (2003) Characterization of an anti-tuberculosis resin glycoside from the prairie medicinal plant Ipomoea leptophylla. J Nat Prod 66:1457–1462. doi:10.1021/np030197j

    Article  CAS  Google Scholar 

  • Barnett HL, Hunter BB (1987) Illustrated genera of imperfect fungi. Macmillan, New York

    Google Scholar 

  • Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337. doi:10.1007/s10295-005-0070-3

    Article  CAS  Google Scholar 

  • Brancato MS, Woollacott RM (1982) Effect of microbial films on settlement of bryozoan larvae (Bugula simplex, B. stolonifera and B. turrita). Mar Biol (Berl) 71:51–56. doi:10.1007/BF00396992

    Article  Google Scholar 

  • Brantner A, Grein E (1994) Antibacterial activity of plant extracts used as externally in tradition medicine. J Ethnopharmacol 44:35–40

    Article  CAS  Google Scholar 

  • Bryan JP, Rittschof D, Qian PY (1997) Settlement inhibition of bryozoan larvae by bacterial films and aqueous leachates. Bull Mar Sci 61:849–857

    Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163. doi:10.1039/b301926h

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. doi:10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

  • Dahlstrom M, Martensson L, Jonsson P, Amebrant T, Elwing H (2002) Surface active adrenoreceptor compounds prevent the settlement of cyprid larvae of Balanus improvisus. Biofouling 16:191–198

    Article  Google Scholar 

  • Dai HQ, Kang QJ, Lia GH, Shen YM (2006) Three new polyketide metabolites from the endophytic fungal strain Cladosporium tenuissimum LR463 of Maytenus hookeri. Helv Chim Acta 89:527–531. doi:10.1002/hlca.200690055

    Article  CAS  Google Scholar 

  • Dobretsov S, Dahms HU, Qian PY (2006) A review: inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22:43–54. doi:10.1080/08927010500504784

    Article  CAS  Google Scholar 

  • Gerhart DJ, Rittschof D, Mayo SW (1988) Chemical ecology and the search for marine antifoulants: studies of a predator–prey symbiosis. J Chem Ecol 14:1905–1910. doi:10.1007/BF01013485

    Article  CAS  Google Scholar 

  • Gesner S, Cohen N, Ilan M, Yarden O, Carmeli S (2005) Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporium sp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B. J Nat Prod 68:1350–1353. doi:10.1021/np0501583

    Article  CAS  Google Scholar 

  • Holden MTG, Chhabra SR, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GP, Stewart GS, Bycroft BW, Kjelleberg S, Williams P (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266

    Article  CAS  Google Scholar 

  • Hosoe T, Okada H, Itabashi T, Nozawa K, Okada K, Takaki GM, Fukushima K, Miyaji M, Kawai K (2000) A new pentanorlanostane derivative, cladosporide A, as a characteristic antifungal agent against Aspergillus fumigatus, isolated from Cladosporium sp. Chem Pharm Bull (Tokyo) 48:1422–1426

    CAS  Google Scholar 

  • Jacyno JM, Harwood JS, Lee MK (1993) Isocladosporin, a biologically active isomer of cladosporin from Cladosporium cladosporioides. J Nat Prod 56(8):1397–1401. doi:10.1021/np50098a023

    Article  CAS  Google Scholar 

  • Jadulco R, Proksch P, Wray V, Berg A, Gräfe U (2001) New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J Nat Prod 64:527–530. doi:10.1021/np000401s

    Article  CAS  Google Scholar 

  • Jadulco R, Brauers G, Edrada RA, Rainer E, Wray V, Proksch P (2002) New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod 65:730–733. doi:10.1021/np010390i

    Article  CAS  Google Scholar 

  • Kelecom A (2002) Secondary metabolites from marine microorganisms. Ann Braz Acad Sci 74:151–170

    CAS  Google Scholar 

  • Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol (Noisy-Le-Grand) 53:15–25

    CAS  Google Scholar 

  • Lau SCK, Mak KK, Chen WF, Qian PY (2002) Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans. Mar Ecol Prog Ser 226:301–310

    Article  Google Scholar 

  • Krchnak V, Weichsel AS, Cabel D, Flegelova Z, Lebl M (1996) Structurally homogeneous and heterogeneous synthetic combinatorial libraries. Mol Divers 1:149–164. doi:10.1007/BF01544953

    Article  CAS  Google Scholar 

  • MacKenzie SE, Gurusamy SG, Piorko A, Strongma DB, Hu TM, Wright JLC (2004) Isolation of sterol from the marine fungus Corollospora lacera. Can J Microbiol 50:1069–1072

    Article  CAS  Google Scholar 

  • Miao L, Qian PY (2005) Antagonistic antimicrobial activity of marine fungi and bacteria isolated from marine biofilm and seawaters of Hong Kong. Aquat Microb Ecol 38:231–238. doi:10.3354/ame038231

    Article  Google Scholar 

  • Milne PJ, Hunt AL, Rostoll K, van der Walt JJ, Graz CJM (1998) The biological activity of selected cyclic dipeptides. J Pharm Pharmacol 50:1331–1335

    CAS  Google Scholar 

  • Müller WEG, Falke D, Heicke B, Zahn RK (1973) Biological activity of 2-phenylethanol and its derivatives. Arch Virol 40:205–214. doi:10.1007/BF01242539

    Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51:71–78. doi:10.1016/j.femsec.2004.07.013

    Article  CAS  Google Scholar 

  • Prasad C (1995) Bioactive cyclic dipeptides. Peptides 16:151–164. doi:10.1016/0196-9781(94)00017-Z

    Article  CAS  Google Scholar 

  • Richards RME, McBride RJ (1973) Effect of 3-phenylpropan-1-ol, 2-phenylethanol, and benzyl alcohol on Pseudomonas aeruginosa. J Pharm Sci 62:585–587. doi:10.1002/jps.2600620408

    Article  CAS  Google Scholar 

  • Rodphaya D, Sekiguchi J, Yamada Y (1986) New macrolides from Penicillium urticae mutant S11R59. J Antibiot (Tokyo) 39:629–635

    CAS  Google Scholar 

  • Smith CJ, Abbanat D, Bernan VS, Maiese WM, Greenstein M, Jompa J, Tahir A, Ireland CM (2000) Novel polyketide metabolites from a species of marine fungi. J Nat Prod 63:142–145. doi:10.1021/np990361w

    Article  CAS  Google Scholar 

  • Strom K, Sjogren J, Broberg A, Schnurer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68:4322–4327. doi:10.1128/AEM.68.9.4322-4327.2002

    Article  CAS  Google Scholar 

  • Tarus PK, Lang’at-Thoruwa CC, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. Bull Chem Soc Ethiop 17:185–190

    CAS  Google Scholar 

  • Thiyagarajan V, Harder T, Qian PY (2003) Combined effect of temperature and salinity on larval development and attachment of the subtidal barnacle Balanus trigonus Darwin. J Exp Mar Biol Ecol 287:223–236. doi:10.1016/S0022-0981(02)00570-1

    Article  Google Scholar 

  • Uyeda M, Suzuki K, Shibata M (1990) 3315-AF2, a cell aggregation factor produced by Streptomyces sp. strain no. A-3315. Agric Biol Chem (Tokyo) 54:251–252

    CAS  Google Scholar 

  • Wells JE, Berry ED, Varel VH (2005) Effects of common forage phenolic acids on Escherichia coli O157:H7 viability in bovine feces. Appl Environ Microbiol 71:7974–7979. doi:10.1128/AEM.71.12.7974-7979.2005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Knowledge Innovation Program of Chinese Academy of Science (Grant KZCX2–YW-216-1), the CAS/SAFEA International Partnership Program for Creative Research Teams, Knowledge Innovation Program of South China Sea Institute of Oceanology, Chinese Academy of Sciences (Grant LYQY200703), and Science Foundation of Guangdong Province (Grant 8151030101000020) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hua Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, SH., Xu, Y., Xiong, HR. et al. Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J Microbiol Biotechnol 25, 399–406 (2009). https://doi.org/10.1007/s11274-008-9904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9904-2

Keywords

Navigation