Skip to main content

Advertisement

Log in

Antimony Causes Mortality and Induces Mutagenesis in the Soil Functional Bacterium Azospirillum brasilense Sp7

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Antimony (Sb) is increasing in the environment but effects of exposure in ecosystems are not well understood. The aim of this work was to examine effects of antimony exposure on the multifunctional, plant growth promoting, ubiquitous soil bacterium Azospirillum brasilense Sp7. Contaminated mine water with high Sb concentrations (0.13 ± 0.09 mg L−1) was lethal to A. brasilense Sp7 in laboratory experiments. Exposure-dose- and time-dependent incubation toxicity assays on A. brasilense Sp7 with Sb(III) and Sb(V) at different concentrations (0.05–5 mg L−1) also resulted in cell mortality which was dose and time dependent. Median effect concentrations of 0.004–0.049 and 0.019–0.467 mg L−1 were estimated for Sb(III) and Sb(V), respectively. Exposure to Sb(III) resulted in greater cell mortality than Sb(V) at all concentrations tested. Exposure also resulted in the emergence of phenotypic variants that were more frequent with exposure to Sb(III). The toxicity assays demonstrated that Sb alone could have been responsible for the mortality observed with exposure to the contaminated mine water even without any other contaminants present. A. brasilense Sp7 was highly sensitive to Sb exposure and the observed effects suggest possible consequences for microbial function, plant-bacterial symbioses and ecosystem health with Sb contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abin, C. A., & Hollibaugh, J. T. (2014). Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism. Environmental Science and Technology, 48, 681–688.

    CAS  Google Scholar 

  • An, Y.-J., & Kim, M. (2009). Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere, 74, 654–659.

    CAS  Google Scholar 

  • ANZG. (2018). Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand governments and Australian state and territory governments. Australia: Canberra ACT Available at www.waterquality.gov.au/anz-guidelines. Accessed 22 July 2019.

  • Armendariz, A. L., Talano, M. A., Wevar Oller, A. L., Medina, M. I., & Agostini, E. (2015). Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. Journal of Environmental Sciences, 33, 203–210.

    CAS  Google Scholar 

  • Asakura, K., Satoh, H., Chiba, M., Okamoto, M., Serizawa, K., Nakano, M., & Omae, K. (2009). Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony. Journal of Occupational Health, 51, 498–512.

    CAS  Google Scholar 

  • Ashley, P. M., Graham, B. P., Tighe, M. K., & Wolfenden, B. J. (2007). Antimony and arsenic dispersion in the Macleay River catchment, New South Wales: a study of the environmental geochemical consequences. Australian Journal of Earth Sciences, 54, 83–103.

    CAS  Google Scholar 

  • Bashan, Y., Holguin, G., & de Bashan, L. E. (2004). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, 50, 521–577.

    CAS  Google Scholar 

  • Bastarrachea, F., Zamudio, M., & Rivas, R. (1988). Non-encapsulated mutants of Azospirillum brasilense and Azospirillum lipoferum. Canadian Journal of Microbiology, 34, 24–29.

    Google Scholar 

  • Berg, R. H., Tyler, M. E., Novick, N. J., Vasil, V., & Vasil, I. K. (1980). Biology of azospirillum-sugarcane association: Enhancement of nitrogenase activity. Applied and Environmental Microbiology, 39, 642–649.

    CAS  Google Scholar 

  • Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82, 493.

    CAS  Google Scholar 

  • Brevik, E. C., Cerdà, A., Mataix-Soler, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of SOIL. SOIL, 1, 117–129.

    Google Scholar 

  • Chen, B.-Y., Liu, H.-L., Chen, Y.-W., & Cheng, Y.-C. (2004). Dose–response assessment of metal toxicity upon indigenous Thiobacillus thiooxidans BC1. Process Biochemistry, 39, 737–748.

    Google Scholar 

  • Chen, J., Li, S., Xu, B., Su, C., Jiang, Q., Zhou, C., Jin, Q., Zhao, Y., & Xiao, M. (2017). Characterization of Burkholderia sp. XTB-5 for phenol degradation and plant growth promotion and its application in bioremediation of contaminated soil. Land Degradation & Development, 28, 1091–1099.

    Google Scholar 

  • Cooper, R. G., & Harrison, A. P. (2009). The exposure to and health effects of antimony. Indian Journal of Occupational and Environmental Medicine, 13, 3–10.

    Google Scholar 

  • Culioli, J.-L., Fouquoire, A., Calendini, S., Mori, C., & Orsini, A. (2009). Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study. Aquatic Toxicology, 94, 286–293.

    CAS  Google Scholar 

  • De Boeck, M., Kirsch-Volders, M., & Lison, D. (2003). Cobalt and antimony: genotoxicity and carcinogenicity. Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis, 533, 135–152.

    Google Scholar 

  • Douay, F., Pruvot, C., Roussel, H., Ciesielski, H., Fourrier, H., Proix, N., & Waterlot, C. (2008). Contamination of urban soils in an area of northern France polluted by dust emissions of two smelters. Water, Air, & Soil Pollution, 188, 247–260.

    CAS  Google Scholar 

  • Dovick, M. A., Kulp, T. R., Arkle, R. S., & Pilliod, D. S. (2016). Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage. Environmental Chemistry, 13, 149–159.

    CAS  Google Scholar 

  • Fibach-Paldi, S., Burdman, S., & Okon, Y. (2012). Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiology Letters, 326, 99–108.

    CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y.-W. (2002). Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews, 57, 125–176.

    CAS  Google Scholar 

  • Filella, M., Belzile, N., & Lett, M.-C. (2007). Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth-Science Reviews, 80, 195–217.

    CAS  Google Scholar 

  • Flynn, H. C., Meharg, A. A., Bowyer, P. K., & Paton, G. I. (2003). Antimony bioavailability in mine soils. Environmental Pollution, 124, 93–100.

    CAS  Google Scholar 

  • Fu, Z., Wu, F., Mo, C., Deng, Q., Meng, W., & Giesy, J. P. (2016). Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Science of the Total Environment, 539, 97–104.

    CAS  Google Scholar 

  • García-Orenes, F., Morugán-Coronado, A., Zornoza, R., & Scow, K. (2013). Changes in soil microbial community structure influenced by agricultural management practices in a Mediterranean agro-ecosystem. PLoS One, 8, e80522.

    Google Scholar 

  • Gill, P. E., Murray, W. M., Saunders, M. A., & Wright, M. H. (1986). User’s guide for NPSOL (version 4.0): a Fortran package for nonlinear programming. Technical Report SOL 86–2, Department of Operations Research, Stanford University.

  • Gowri, P. M., & Srivastava, S. (1996). Encapsulation as a response of Azospirillum brasilense sp7 to zinc stress. World Journal of Microbiology and Biotechnology, 12, 319–322.

    CAS  Google Scholar 

  • Grobelak, A., & Napora, A. (2015). The chemophytostabilisation process of heavy metal polluted soil. PLoS One, 10, e0129538.

    Google Scholar 

  • Guillamot, F., Calvert, V., Millot, M. V., & Criquet, S. (2014). Does antimony affect microbial respiration in Mediterranean soil? A microcosm experiment. Pedobiologia, 57, 119–121.

    Google Scholar 

  • Hammel, W., Steubing, L., & Debus, R. (1998). Assessment of the ecotoxic potential of soil contaminants by using a soil-algae test. Ecotoxicology and Environmental Safety, 40, 173–176.

    CAS  Google Scholar 

  • He, M., Wang, X., Wu, F., & Fu, Z. (2012). Antimony pollution in China. Science of the Total Environment, 421–422, 41–50.

    Google Scholar 

  • He, M., Wang, N., Long, X., Zhang, C., Ma, C., Zhong, Q., Wang, A., Wang, Y., Pervaiz, A., & Shan, J. (2018). Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects. Journal of Environmental Sciences, 75, 14–39.

    Google Scholar 

  • Henckens, M. L. C. M., Driessen, P. P. J., & Worrell, E. (2016). How can we adapt to geological scarcity of antimony? Investigation of antimony’s substitutability and of other measures to achieve a sustainable use. Resources, Conservation and Recycling, 108, 54–62.

    Google Scholar 

  • Henderson, I. R., Owen, P., & Nataro, J. P. (1999). Molecular switches — the ON and OFF of bacterial phase variation. Molecular Microbiology, 33, 919–932.

    CAS  Google Scholar 

  • Herath, I., Vithanage, M., & Bundschuh, J. (2017). Antimony as a global dilemma: geochemistry, mobility, fate and transport. Environmental Pollution, 223, 545–559.

    CAS  Google Scholar 

  • Hockmann, K., Tandy, S., Lenz, M., Reiser, R., Conesa, H. M., Keller, M., Studer, B., & Schulin, R. (2015). Antimony retention and release from drained and waterlogged shooting range soil under field conditions. Chemosphere, 134, 536–543.

    CAS  Google Scholar 

  • IARC (1989). Antimony trioxide and antimony trisulfide. International Agency for Research on Cancer monographs on the evaluation of carcinogenic risks to humans.

  • Kamnev, A. A., Tarantilis, P. A., Antonyuk, L. P., Bespalova, L. A., Polissiou, M. G., Colina, M., Gardiner, P. H. E., & Ignatov, V. V. (2001). Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7. Journal of Molecular Structure, 563–564, 199–207.

    Google Scholar 

  • Kamnev, A. A., Tugarova, A. V., Antonyuk, L. P., Tarantilis, P. A., Polissiou, M. G., & Gardiner, P. H. E. (2005). Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. Journal of Trace Elements in Medicine and Biology, 19, 91–95.

    CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Management, 28, 215–225.

    CAS  Google Scholar 

  • Lafond, S., Blais, J.-F., Martel, R., & Mercier, G. (2012). Chemical leaching of antimony and other metals from small arms shooting range soil. Water, Air, & Soil Pollution, 224, 1371.

    Google Scholar 

  • Lerner, A., Valverde, A., Castro-Sowinski, S., Lerner, H., Okon, Y., & Burdman, S. (2010). Phenotypic variation in Azospirillum brasilense exposed to starvation. Environmental Microbiology Reports, 2, 577–586.

    CAS  Google Scholar 

  • Li, J., Wang, Q., Oremland, R. S., Kulp, T. R., Rensing, C., & Wang, G. (2016). Microbial antimony biogeochemistry: enzymes, regulation, and related metabolic pathways. Applied and Environmantal Microbiology, 82, 5482–5494.

    CAS  Google Scholar 

  • Liu, F., Le, X. C., McKnight-Whitford, A., Xia, Y., Wu, F., Elswick, E., Johnson, C. C., & Zhu, C. (2010). Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China. Environmental Geochemistry and Health, 32, 401–413.

    CAS  Google Scholar 

  • López, S., Aguilar, L., Mercado, L., Bravo, M., & Quiroz, W. (2015). Sb(V) reactivity with human blood components: redox effects. PLoS One, 10, e0114796.

    Google Scholar 

  • Lyubun, Y. V., Fritzsche, A., Chernyshova, M. P., Dudel, E. G., & Fedorov, E. E. (2006). Arsenic transformation by Azospirillum brasilense Sp245 in association with wheat (Triticum Aestivum L.) roots. Plant and Soil, 286, 219–227.

    CAS  Google Scholar 

  • Maher, W., Forster, S., Krikowa, F., Snitch, P. C., Chapple, G., & Craig, P. (2001). Measurement of trace elements and phosphorus in marine animal and plant tissues by low-volume microwave digestion and ICP-MS. Atomic Spectroscopy, 22, 361.

    CAS  Google Scholar 

  • Mahmoud, E. K., & Ghoneim, A. M. (2016). Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt. Solid Earth, 7, 703–711.

    Google Scholar 

  • Meng, Y.-L., Liu, Z., & Rosen, B. P. (2004). As (III) and Sb (III) uptake by GlpF and efflux by ArsB in Escherichia coli. The Journal of Biological Chemistry, 279, 18334–18341.

    CAS  Google Scholar 

  • Miekeley, N., Mortari, S., & Schubach, A. (2002). Monitoring of total antimony and its species by ICP-MS and on-line ion chromatography in biological samples from patients treated for leishmaniasis. Analytical and Bioanalytical Chemistry, 372, 495–502.

    CAS  Google Scholar 

  • Morugán-Coronado, A., García-Orenes, F., & Cerdà, A. (2015). Changes in soil microbial activity and physicochemical properties in agricultural soils in Eastern Spain. Spanish Journal of Soil Science, 5, 201–213.

    Google Scholar 

  • Mukhopadhyay, S., George, J., & Masto, R. E. (2017). Changes in polycyclic aromatic hydrocarbons (PAHs) and soil biological parameters in a revegetated coal mine spoil. Land Degradation & Development, 28, 1047–1055.

    Google Scholar 

  • Murata, T., Kanao-Koshikawa, M., & Takamatsu, T. (2005). Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water, Air, & Soil Pollution, 164, 103–118.

    CAS  Google Scholar 

  • Nam, S-H., Yang, C-Y., & An, Y-J. (2009). Effects of antimony on aquatic organisms (larva and embryo of Oryzias latipes, Moina macrocopa, Simocephalus mixtus, and Pseudokirchneriella subcapitata). Chemosphere, 7,: 889-893.

  • New, P. B., & Kennedy, I. R. (1989). Regional distribution and pH sensitivity of Azospirillum associated with wheat roots in Eastern Australia. Microbial Ecology, 17, 299–309.

    CAS  Google Scholar 

  • Ning, Z., Xiao, T., & Xiao, E. (2015). Antimony in the soil-plant system in an Sb mining/smelting area of Southwest China. International Journal of Phytoremediation, 17, 1081–1089.

    CAS  Google Scholar 

  • Obiakor, M. O., Tighe, M., Pereg, L., & Wilson, S. C. (2017). Bioaccumulation, trophodynamics and ecotoxicity of antimony in environmental freshwater food webs. Critical Reviews in Environmental Science and Technology, 47, 2208–2258.

    CAS  Google Scholar 

  • Okkenhaug, G., Zhu, Y.-G., Luo, L., Lei, M., Li, X., & Mulder, J. (2011). Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environmental Pollution, 159, 2427–2434.

    CAS  Google Scholar 

  • Okkenhaug, G., Amstätter, K., Lassen Bue, H., Cornelissen, G., Breedveld, G. D., Henriksen, T., & Mulder, J. (2013). Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments. Environmental Science and Technology, 47, 6431–6439.

    CAS  Google Scholar 

  • Oorts, K., Smolders, E., Degryse, F., Buekers, J., Gasco, G., Connelis, G., & Mertens, J. (2008). Solubility and toxicity of antimony trioxide (Sb2O3) in soil. Environmental Science and Technology, 42, 4378–4383.

    CAS  Google Scholar 

  • Pereg-Gerk, L., Paquelin, A., Gounon, P., Kennedy, I. R., & Elmerich, C. (1998). A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7. Molecular Plant-Microbe Interactions, 11, 177–187.

    CAS  Google Scholar 

  • Pereg-Gerk, L., Gilchrist, K., & Kennedy, I. R. (2000). Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations. Applied and Environmental Microbiology, 66, 2175–2184.

    CAS  Google Scholar 

  • Pereg, L., de -Bashan, L. E., & Bashan, Y. (2016). Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil, 399, 389–414.

    CAS  Google Scholar 

  • Quiroz, W., Arias, H., Bravo, M., Pinto, M., Lobos, M. G., & Cortés, M. (2011). Development of analytical method for determination of Sb(V), Sb (III) and TMSb(V) in occupationally exposed human urine samples by HPLC–HG-AFS. Microchemical Journal, 97, 78–84.

    CAS  Google Scholar 

  • Rabbi, S. M. F., Daniel, H., Lockwood, P. V., Macdonald, C., Pereg, L., Tighe, M., Wilson, B. R., & Young, I. M. (2016). Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity. Scientific Reports, 6, 33012.

    CAS  Google Scholar 

  • Rivas-Pérez, I. M., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., Monterroso, C., Macías, F., & Álvarez-Rodríguez, E. (2016). Evolution of chemical characteristics of technosols in an afforested coal mine dump over a 20-year period. Land Degradation & Development, 27, 1640–1649.

    Google Scholar 

  • Romero, A. M., Vega, D., & Correa, O. S. (2014). Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Applied Soil Ecology, 82, 38–43.

    Google Scholar 

  • Sadasivan, L., & Neyra, C. A. (1985). Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. Journal of Bacteriology, 163, 716–723.

    CAS  Google Scholar 

  • Sanders, O. I., Rensing, C., Kuroda, M., Mitra, B., & Rosen, B. P. (1997). Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. Journal of Bacteriology, 179, 3365–3367.

    CAS  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

    Google Scholar 

  • Shotyk, W., Krachler, M., & Chen, B. (2005). Antimony: global environmental contaminant. Journal of Environmental Monitoring, 7, 1135–1136.

    CAS  Google Scholar 

  • Skvortsov, I. M., & Ignatov, V. V. (1998). Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS Microbiology Letters, 165, 223–229.

    CAS  Google Scholar 

  • Smith, S. M. (2014). Investigating the role of the type VI secretion system in the rhizobacterium Azospirillum brasilense, 39 pp. Senior Honours. The University of Tennessee, Knoxville, USA.

  • Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, 24, 487–506.

    CAS  Google Scholar 

  • Sun, W., Xiao, E., Dong, Y., Tang, S., Krumins, V., Ning, Z., Sun, M., Zhao, Y., Wu, S., & Xiao, T. (2016). Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Science of the Total Environment, 550, 297–308.

    CAS  Google Scholar 

  • Sun, W., Xiao, E., Xiao, T., Krumins, V., Wang, Q., Haggblom, M., Dong, Y., Tang, S., Hu, M., Li, B., Xia, B., & Liu, W. (2017). Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions. Environmental Science and Technology, 16, 9165–9175.

    Google Scholar 

  • Sun, X., Li, B., Han, F., Xiao, E., Xiao, T., & Sun, W. (2019). Impacts of arsenic and antimony co-contamination on sedimentary microbial communities in rivers with different pollution gradients. Microbial Ecology, 2019, 1–14.

    Google Scholar 

  • Sundar, S., & Chakravarty, J. (2010). Antimony toxicity. International Journal of Environmental Research and Public Health, 7, 4267–4277.

    CAS  Google Scholar 

  • Telford, K., Maher, W., Krikowa, F., Foster, S., Ellwood, M. J., Ashley, P. M., Lockwood, P. V., & Wilson, S. C. (2009). Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environmental Chemistry, 6, 133.

    CAS  Google Scholar 

  • Tighe, M., Ashley, P., Lockwood, P., & Wilson, S. (2005). Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Science of the Total Environment, 347, 175–186.

    CAS  Google Scholar 

  • Tortora, M. L., Díaz-Ricci, J. C., & Pedraza, R. O. (2012). Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant and Soil, 356, 279–290.

    CAS  Google Scholar 

  • Vial, L., Pothier, J. F., Normand, P., Moënne-Loccoz, Y., Bally, R., & Wisniewski-Dyé, F. (2004). Construction of a recA mutant of Azospirillum lipoferum and involvement of recA in phase variation. FEMS Microbiology Letters, 236, 291–299.

    CAS  Google Scholar 

  • Vishnivetskaya, T. A., Mosher, J. J., Palumbo, A. V., Yang, Z. K., Podar, M., Brown, S. D., Brooks, S. C., Gu, B., Southworth, G. R., Drake, M. M., Brandt, C. C., & Elias, D. A. (2011). Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams. Applied and Environmental Microbiology, 77, 302–311.

    CAS  Google Scholar 

  • Volfson, V., Fibach-Paldi, S., Paulucci, N. S., Dardanelli, M. S., Matan, O., Burdman, S., & Okon, Y. (2013). Phenotypic variation in Azospirillum brasilense Sp7 does not influence plant growth promotion effects. Soil Biology and Biochemistry, 67, 255–262.

    CAS  Google Scholar 

  • Wang, N., Zhang, S., & He, M. (2018). Bacterial community profile of contaminated soils in a typical antimony mining site. Environmental Science and Pollution Research, 25, 141–152.

    CAS  Google Scholar 

  • Wang, N., Wang, A., Xie, J., & He, M. (2019). Responses of soil fungal and archaeal communities to environmental factors in an ongoing antimony mine area. Science of the Total Environment, 652, 1030–1039.

    Google Scholar 

  • Ward, R. J., Black, C. D. V., & Watson, G. J. (1979). Determination of antimony in biological materials by electrothermal atomic absorption spectroscopy. Clinica Chimica Acta, 99, 143–152.

    CAS  Google Scholar 

  • Wilson, N. J., Craw, D., & Hunter, K. (2004). Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environmental Pollution, 129, 257–266.

    CAS  Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution, 158, 1169–1181.

    CAS  Google Scholar 

  • Wisniewski-Dyé, F., & Vial, L. (2008). Phase and antigenic variation mediated by genome modifications. Antonie Van Leeuwenhoek, 94, 493–515.

    Google Scholar 

  • Wisniewski-Dyé, F., Borziak, K., Khalsa-Moyers, G., Alexandre, G., Sukharnikov, L. O., Wuichet, K., Hurst, G. B., McDonald, W. H., Robertson, J. S., Barbe, V., Calteau, A., Rouy, Z., Mangenot, S., Prigent-Combaret, C., Normand, P., Boyer, M., Siguier, P., Dessaux, Y., Elmerich, C., Condemine, G., Krishnen, G., Kennedy, I., Paterson, A. H., González, V., Mavingui, P., & Zhulin, I. B. (2011). Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genetics, 7, e1002430.

    Google Scholar 

  • Xiao, E., Krumins, V., Dong, Y., Xiao, T., Ning, Z., Xiao, Q., & Sun, W. (2016). Microbial diversity and community structure in an antimony-rich tailings dump. Applied Microbiology and Biotechnology, 100, 7751–7763.

    CAS  Google Scholar 

  • Xu, Y., Seshadri, B., Bolan, N., Sarkar, B., Ok, Y. S., Zhang, W., Rumpel, C., Sparks, D., Farrell, M., Hall, T., & Dong, Z. (2019). Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International, 125, 478–488.

    CAS  Google Scholar 

  • Yang, J.-L. (2014). Comparative acute toxicity of gallium (III), antimony (III), indium (III), cadmium (II), and copper (II) on freshwater swamp shrimp (Macrobrachium nipponense). Biological Research, 47, 13.

    Google Scholar 

  • Yasuda, M., Isawa, T., Shinozaki, S., Minamisawa, K., & Nakashita, H. (2009). Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Bioscience Biotechnology and Biochemistry, 73, 2595–2599.

    CAS  Google Scholar 

  • Zeng, D., Zhou, S., Ren, B., & Chen, T. (2015). Bioaccumulation of antimony and arsenic in vegetables and health risk assessment in the superlarge antimony-mining area, China. Journal of Analytical Methods in Chemistry, 2015, 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Wilson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lily Pereg is recently deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obiakor, M.O., Wilson, S.C., Tighe, M. et al. Antimony Causes Mortality and Induces Mutagenesis in the Soil Functional Bacterium Azospirillum brasilense Sp7. Water Air Soil Pollut 230, 183 (2019). https://doi.org/10.1007/s11270-019-4232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4232-8

Keywords

Navigation