Skip to main content
Log in

Soil Carbon Dioxide Fluxes from Three Forest Types of the Tropical Montane Rainforest on Hainan Island, China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Tropical forests play an important role in carbon cycle. However, the temporal and spatial variation in soil carbon dioxide (CO2) emission of tropical forest remains uncertain, especially near the Tropic of Cancer. In this research, we studied the annual soil CO2 fluxes from three tropical montane rainforests on the Hainan Island of China (pristine montane rainforest, PF; secondary montane rainforest, SF; and Podocarpus imbricatus plantation, PP). The results showed a lower annual average soil CO2 flux as 6.85 ± 0.52 Mg C-CO2 ha−1 (9.17 Mg C-CO2 ha−1 in the wet season and 4.50 Mg C-CO2 ha−1 in the dry season). The CO2 fluxes exhibited obviously seasonal variation during the study period. Among the three forest types, PF had the highest average CO2 flux rate of 317.77 ± 147.71 mg CO2 m−2 h−1 (433.08 mg CO2 m−2 h−1 in the wet season and 202.47 mg CO2 m−2 h−1 in the dry season), followed by PP of 286.84 ± 137.48 mg CO2 m−2 h−1 (367.12 mg CO2 m−2 h−1 in the wet season and 206.56 mg CO2 m−2 h−1 in the dry season) and SF of 255.09 ± 155.26 mg CO2 m−2 h−1 (351.48 mg CO2 m−2 h−1 in the wet season and 155.71 mg CO2 m−2 h−1 in the dry season). We found between CO2 fluxes and soil temperature a highly significant linear relation (P < 0.01) at 5 cm depth and a highly significant exponential correlation (P < 0.01) at 10 cm depth for all three forest types; a significant linear relation (P < 0.05) between CO2 fluxes and soil moisture content was found for SF and PF, but not for PP (P > 0.05). The CO2 flux was significantly correlated (P < 0.05) with water-filled pore space only for PF. In conclusion, our results suggested soil CO2 fluxes in the three forest types that exhibit obviously spatial and temporal variation, and the temperature is the major factor affecting soil CO2 fluxes from this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi, M., Bekku, Y. S., Rashidah, W., Okuda, T., & Koizumi, H. (2006). Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology, 34, 258–265.

    Article  Google Scholar 

  • Akburak, S., & Makineci, E. (2013). Temporal changes of soil respiration under different tree species. Environmental Monitoring and Assessment, 185, 3349–3358.

    Article  CAS  Google Scholar 

  • Bai, Z. Z., Yang, G., Chen, H., Zhu, Q. V., Chen, D. X., Li, Y. D., Wang, X., Wu, Z. M., Zhou, G. Y., & Peng, C. H. (2014). Nitrous oxide fluxes from three forest types of the tropical mountain rainforests on Hainan Island, China. Atmospheric Environment, 92, 469–477.

    Article  CAS  Google Scholar 

  • Blagodatskaya, E., Zheng, X., Blagodatsky, S., Wiegl, R., Dannenmann, M., & Butterbach-Bahl, K. (2014). Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil. Biology and Fertility of Soils, 50, 775–783.

    Article  CAS  Google Scholar 

  • Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil respiration data. Biogeosciences, 7, 1915–1926.

    Article  CAS  Google Scholar 

  • Boyer, J. N., & Groffman, P. M. (1996). Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biology and Biochemistry, 28, 783–790.

    Article  CAS  Google Scholar 

  • Bujalský, L., Kaneda, S., Dvorščík, P., & Frouz, J. (2014). In situ soil respiration at reclaimed and unreclaimed post-mining sites: responses to temperature and reclamation treatment. Ecological Engineering, 68, 53–59.

    Article  Google Scholar 

  • Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104, 18866–18870.

    Article  CAS  Google Scholar 

  • Cardoso, S. J., Vidal, L. O., Mendonca, R. F., Tranvik, L. J., Sobek, S., & Roland, F. (2013). Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir. Frontiers in Microbiology, 4, 8.

    Article  Google Scholar 

  • Chen, D. X., Li, Y. D., Liu, H. P., Xu, H., Xiao, W. F., Luo, T. S., Zhou, Z., & Lin, M. X. (2010). Biomass and carbon dynamics of a tropical mountain rain forest in China. Science China. Life Sciences, 53, 798–810.

    Article  CAS  Google Scholar 

  • Cheng, J. Z., Lee, X. Q., Zhou, Z. H., Wang, B., Xing, Y., Cheng, H. G., & Tang, Y. (2013). The effects of litter layer and soil properties on the soil-atmosphere fluxes of greenhouse gases in Karst Forest, Southwest China. Polish Journal of Ecology, 61, 79–92.

    CAS  Google Scholar 

  • Cook, R. L., Binkley, D., Mendes, J. C. T., & Stape, J. L. (2014). Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. Forest Ecology and Management, 324, 37–45.

    Article  Google Scholar 

  • Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., & Luke, C. M. (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341–344.

    Article  CAS  Google Scholar 

  • Davidson, E., Belk, E., & Boone, R. D. (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217–227.

    Article  Google Scholar 

  • Davidson, E. A., Nepstad, D. C., Ishida, F. Y., & Brando, P. M. (2008). Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 14, 2582–2590.

    Article  Google Scholar 

  • Deng, Q., Zhou, G., Liu, J., Liu, S., Duan, H., & Zhang, D. (2010). Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences, 7, 315–328.

    Article  CAS  Google Scholar 

  • Deng, Q., Cheng, X., Zhou, G., Liu, J., Liu, S., Zhang, Q., & Zhang, D. (2013). Seasonal responses of soil respiration to elevated CO2 and N addition in young subtropical forest ecosystems in southern China. Ecological Engineering, 61, 65–73.

    Article  Google Scholar 

  • Díaz-Pinés, E., Schindlbacher, A., Godino, M., Kitzler, B., Jandl, R., Zechmeister-Boltenstern, S., & Rubio, A. (2014). Effects of tree species composition on the CO2 and N2O efflux of a Mediterranean mountain forest soil. Plant and Soil, 384, 243–257.

    Article  Google Scholar 

  • Dong, L. Y., Wu, C. S., Gao, J. M., & Sha, L. Q. (2012). Effects of simulated rainfall on the soil respiration in tropical secondary forest and rubber plantation in Xishuangbanna of Yunnan, Southwest China. Chinese Journal of Ecology, 31, 1887–1892.

    Google Scholar 

  • Fan, H. B., Wu, J. P., Liu, W. F., Yuan, Y. H., Huang, R. Z., Liao, Y. C., & Li, Y. Y. (2014). Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant and Soil, 379, 361–371.

    Article  CAS  Google Scholar 

  • Fender, A.-C., Gansert, D., Jungkunst, H. F., Fiedler, S., Beyer, F., Schützenmeister, K., Thiele, B., Valtanen, K., Polle, A., & Leuschner, C. (2013). Root-induced tree species effects on the source/sink strength for greenhouse gases (CH4, N2O and CO2) of a temperate deciduous forest soil. Soil Biology and Biochemistry, 57, 587–597.

    Article  CAS  Google Scholar 

  • Han, G., Zhou, G., Xu, Z., Yang, Y., Liu, J., & Shi, K. (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291, 15–26.

    Article  CAS  Google Scholar 

  • Hanson, P., Edwards, N., Garten, C., & Andrews, J. (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115–146.

    Article  CAS  Google Scholar 

  • Hashimoto, S., Tanaka, N., Suzuki, M., Inoue, A., Takizawa, H., Kosaka, I., Tanaka, K., Tantasirin, C., & Tangtham, N. (2004). Soil respiration and soil CO2 concentration in a tropical forest, Thailand. Journal of Forest Research, 9, 75–79.

    Article  CAS  Google Scholar 

  • Hassan, W., David, J., & Abbas, F. (2014). Effect of type and quality of two contrasting plant residues on CO2 emission potential of Ultisol soil: Implications for indirect influence of temperature and moisture. Catena, 114, 90–96.

    Article  CAS  Google Scholar 

  • Huang, Z., Yu, Z. & Wang, M. (2014) Environmental controls and the influence of tree species on temporal variation in soil respiration in subtropical China. Plant and Soil, 1–13

  • IPCC (2013) Summary for policymakers. In Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.

  • Itoh, M., Kosugi, Y., Takanashi, S., Kanemitsu, S., Osaka, K. i., Hayashi, Y., Tani, M., & Rahim Nik, A. (2012). Effects of soil water status on the spatial variation of carbon dioxide, methane and nitrous oxide fluxes in tropical rain-forest soils in Peninsular Malaysia. Journal of Tropical Ecology, 28, 557–570.

    Article  Google Scholar 

  • Jauhiainen, J., Takahashi, H., Heikkinen, J. E., Martikainen, P. J., & Vasander, H. (2005). Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11, 1788–1797.

    Article  Google Scholar 

  • Jia, H. T., Zhu, X. P., Sheng, Y., Zhao, C. Y., Xu, Y. J., & Kadipov, K. G. (2013). Characteristics of soil CO2 emission of 3 kinds of woodland ecosystems in arid areas. Science of Soil and Water Conservation, 11, 95–98.

    Google Scholar 

  • Jiang, H., Deng, Q., Zhou, G., Hui, D., Zhang, D., Liu, S., Chu, G., & Li, J. (2013). Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China. Biogeosciences, 10, 3963–3982.

    Article  Google Scholar 

  • Katayama, A., Kume, T., Komatsu, H., Ohashi, M., Nakagawa, M., Yamashita, M., Otsuki, K., Suzuki, M., & Kumagai, T. (2009). Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 149, 1666–1673.

    Article  Google Scholar 

  • Kiese, R., & Butterbach-Bahl, K. (2002). N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biology and Biochemistry, 34, 975–987.

    Article  CAS  Google Scholar 

  • Koehler, B., Corre, M. D., Veldkamp, E., & Sueta, J. P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale. Biogeosciences, 6, 2973–2983.

    Article  CAS  Google Scholar 

  • Kosugi, Y., Mitani, T., Ltoh, M., Noguchi, S., Tani, M., Matsuo, N., Takanashi, S., Ohkubo, S., & Nik, A. R. (2007). Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agricultural and Forest Meteorology, 147, 35–47.

    Article  Google Scholar 

  • Li, H. F. (2011). Study on soil CO2 and CH4 fluxes in four typical plantations in Southern China. Journal of Zhejiang for Science & Technology, 31, 6–12.

    Google Scholar 

  • Li, Y. D., Chen, B. F., & Zhou, G. Y. (2002). The research of tropical forests and biodiversity protection in Hainan, China. Beijing: China Forestry Publishing House.

    Google Scholar 

  • Liang, J.B., (2002). Greenhouse gases and animal agriculture in Asia. Greenhouse Gases and Animal Agriculture: Proceedings, 15–20.

  • Lin, L. S., Han, S. J., Wang, Y. S., & Gu, Z. J. (2004). The study of soil CO2 efflux from four forest types in Changbaishan, China. Chinese Journal of Ecology, 23, 42–45.

    CAS  Google Scholar 

  • Liptzin, D., Silver, W. L., & Detto, M. (2011). Temporal dynamics in soil oxygen and greenhouse gases in two humid tropical forests. Ecosystems, 14, 171–182.

    Article  CAS  Google Scholar 

  • Lou, Y., Li, Z., Zhang, T., & Liang, Y. (2004). CO2 emissions from subtropical arable soils of China. Soil Biology and Biochemistry, 36, 1835–1842.

    Article  CAS  Google Scholar 

  • Luo, T., Chen, B., Li, Y., Lin, M., Zhou, G., Chen, D., & Qiu, J. (2001). Litter and soil respiration in a tropical mountain rain forest in Jianfengling, Hainan Island. Acta Ecologica Sinica, 21, 2013–2017.

    Google Scholar 

  • Matvienko, A. I., Makarov, M. I., & Menyailo, O. V. (2014). Biological sources of soil CO2 under Larix sibirica and Pinus sylvestris. Russian Journal of Ecology, 45, 174–180.

    Article  CAS  Google Scholar 

  • Mo, J. M., Fang, Y. T., Xu, G. L., Li, D. J., & Xue, J. H. (2005). The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecologica Sinica, 25, 682–690.

    CAS  Google Scholar 

  • Mosier, A. R. (1998). Soil processes and global change. Biology and Fertility of Soils, 27, 221–229.

    Article  CAS  Google Scholar 

  • Nottingham, A. T., Ccahuana, A. J. Q., & Meir, P. (2012). Soil properties in tropical montane cloud forests influence estimates of soil CO2 efflux. Agricultural and Forest Meteorology, 166, 215–220.

    Article  Google Scholar 

  • Ohkubo, S., Kosugi, Y., Takanashi, S., Mitani, T., & Tani, M. (2007). Comparison of the eddy covariance and automated closed chamber methods for evaluating nocturnal CO2 exchange in a Japanese cypress forest. Agricultural and Forest Meteorology, 142, 50–65.

    Article  Google Scholar 

  • Osuri, A. M., Kumar, V. S., & Sankaran, M. (2014). Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. Forest Ecology and Management, 329, 375–383.

    Article  Google Scholar 

  • Pypker, T. G., & Fredeen, A. L. (2003). Below ground CO2 efflux from cut blocks of varying ages in sub-boreal British Columbia. Forest Ecology and Management, 172, 249–259.

    Article  Google Scholar 

  • Rowlings, D., Grace, P., Kiese, R., & Weier, K. (2012). Environmental factors controlling temporal and spatial variability in the soil-atmosphere exchange of CO2, CH4 and N2O from an Australian subtropical rainforest. Global Change Biology, 18, 726–738.

    Article  Google Scholar 

  • Schindlbacher, A., Zechmeister-Boltenstern, S., Glatzel, G., & Jandl, R. (2007). Winter soil respiration from an Austrian mountain forest. Agricultural and Forest Meteorology, 146, 205–215.

    Article  Google Scholar 

  • Schlesinger, W. H., & Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20.

    Article  CAS  Google Scholar 

  • Sha, L. Q., Zheng, Z., Tang, J. W., Wang, Y. H., Zhang, Y. P., Cao, M., Wang, R., Liu, G. G., Wang, Y. S., & Sun, Y. (2005). Soil respiration in tropical seasonal rain forest in Xishuangbanna, SW China. Science in China Series D: Earth Sciences, 48, 189–197.

    Article  CAS  Google Scholar 

  • Silver, W. L., Lugo, A., & Keller, M. (1999). Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry, 44, 301–328.

    Google Scholar 

  • Silvola, J., Alm, J., Ahlholm, U., Nykanen, H., & Martikainen, P. J. (1996). The contribution of plant roots to CO2 fluxes from organic soils. Biology and Fertility of Soils, 23, 126–131.

    Article  CAS  Google Scholar 

  • Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8, 779–790.

    Article  CAS  Google Scholar 

  • Soe, A. R. B., & Buchmann, N. (2005). Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiology, 25, 1427–1436.

    Article  CAS  Google Scholar 

  • Subke, J. A., Reichstein, M., & Tenhunen, J. D. (2003). Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology and Biochemistry, 35, 1467–1483.

    Article  CAS  Google Scholar 

  • Tang, X. L., Liu, S. G., Zhou, G. Y., Zhang, D. Q., & Zhou, C. Y. (2006a). Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biology, 12, 546–560.

    Article  Google Scholar 

  • Tang, X. L., Zhou, G. Y., Liu, S. G., Zhang, D. Q., Liu, S. Z., Li, J., & Zhou, C. Y. (2006b). Dependence of soil respiration on soil temperature and soil moisture in successional forests in southern China. Journal of Integrative Plant Biology, 48, 654–663.

    Article  Google Scholar 

  • Thomas, M. V., Malhi, Y., Fenn, K. M., Fisher, J. B., Morecroft, M. D., Lloyd, C. R., Taylor, M. E., & McNeil, D. D. (2011). Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England. Biogeosciences, 8, 1595–1613.

    Article  CAS  Google Scholar 

  • van Groenigen, K. J., Osenberg, C. W., & Hungate, B. A. (2011). Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature, 475, 214–216.

    Article  Google Scholar 

  • von Arnold, K., Nilsson, M., Hanell, B., Weslien, P., & Klemedtsson, L. (2005). Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biology and Biochemistry, 37, 1059–1071.

    Article  Google Scholar 

  • Wang, M., Han, S., & Wang, Y. (2004). Important factors controlling CO2 emission rates from forest soil. Chinese Journal of Ecology, 23, 242229.

    Google Scholar 

  • Wangluk, S., Boonyawat, S., Diloksumpun, S., & Tongdeenok, P. (2013). Role of soil temperature and moisture on soil respiration in a teak plantation and mixed deciduous forest in Thailand. Journal of Tropical Forest Science, 25, 339–349.

    Google Scholar 

  • Werner, C., Zheng, X. H., Tang, J. W., Xie, B. H., Liu, C. Y., Kiese, R., & Butterbach-Bahl, K. (2006). N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant and Soil, 289, 335–353.

    Article  CAS  Google Scholar 

  • Wood, T. E., Cavaleri, M. A., & Reed, S. C. (2012). Tropical forest carbon balance in a warmer world: a critical review spanning microbial-to ecosystem-scale processes. Biological Reviews, 87, 912–927.

    Article  Google Scholar 

  • Wood, T. E., Detto, M., & Silver, W. L. (2013). Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. Plos One, 8, 7.

    Google Scholar 

  • Wu, Z. M., Zeng, Q. B., Li, Y. D., Zhou, G. Y., Chen, B. F., Du, Z. H., & Lin, M. X. (1997). A preliminary research on the carbon storage and CO2 release of the tropical forest soils in Jianfengling, Hainan an Island, China. Acta Phytoecologica Sinica, 21, 8.

    Google Scholar 

  • Xu, X. K., Han, L., Luo, X. B., Liu, Z. R., & Han, S. J. (2009). Effects of nitrogen addition on dissolved N2O and CO2, dissolved organic matter, and inorganic nitrogen in soil solution under a temperate old-growth forest. Geoderma, 151, 370–377.

    Article  CAS  Google Scholar 

  • Yan, J. H., Zhang, W., Wang, K. Y., Qin, F., Wang, W. T., Dai, H. T., & Li, P. X. (2014). Responses of CO2, N2O and CH4 fluxes between atmosphere and forest soil to changes in multiple environmental conditions. Global Change Biology, 20, 300–312.

    Article  Google Scholar 

  • Zanchi, F. B., Meesters, A., Waterloo, M. J., Kruijt, B., Kesselmeier, J., Luizao, F. J., & Dolman, A. J. (2014). Soil CO2 exchange in seven pristine Amazonian rain forest sites in relation to soil temperature. Agricultural and Forest Meteorology, 192, 96–107.

    Article  Google Scholar 

  • Zhang, J. H., Han, S. J., & Yu, G. R. (2006). Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest. Agricultural and Forest Meteorology, 137, 150–165.

    Article  Google Scholar 

  • Zhou, W., Sha, L., Shen, S., & Zheng, Z. (2008). Seasonal change of soil respiration and its influence factors in rubber (Hevea brasiliensis) plantation in Xishuangbanna, SW China. Journal of Mountain Science, 26, 317–325.

    CAS  Google Scholar 

  • Zhou, Z., Jiang, L., Du, E. Z., Hu, H. F., Li, Y. D., Chen, D. X., & Fang, J. Y. (2013). Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. Journal of Plant Ecology, 6, 325–334.

    Article  Google Scholar 

  • Zhou, W. P., Hui, D. F., & Shen, W. J. (2014). Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: a laboratory incubation study. Plos One, 9, 10.

    Google Scholar 

Download references

Acknowledgments

This study was supported by 100 Talents Program of The Chinese Academy of Sciences, Program for New Century Excellent Talents in University (NCET-12-0477), the National Natural Science Foundation of China (nos. 31100348 and 41201205), International S&T Cooperation Program of China (S2013GI0408), and China Qianren Project. The authors give special thanks to Ms. Wan Xiong for her editing and valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huai Chen or Yinggao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Chen, H., Peng, C. et al. Soil Carbon Dioxide Fluxes from Three Forest Types of the Tropical Montane Rainforest on Hainan Island, China. Water Air Soil Pollut 227, 213 (2016). https://doi.org/10.1007/s11270-016-2904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2904-1

Keywords

Navigation