Skip to main content
Log in

Removal of Uranium(VI), Lead(II) at the Surface of TiO2 Nanotubes Studied by X-Ray Photoelectron Spectroscopy

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A thin film of well-ordered anatase TiO2 nanotubes prepared by anodic oxidation of titanium metal were synthesised and used as adsorbent medium for the purification of water from aqueous uranium and lead. The amount of subtracted metal ions was quantified by using X-ray photoelectron spectroscopy at the surface of the reacted TiO2 surface. Batch experiments for the sorption of U and Pb at the surface of the titania substrate were carried out in separated solution equilibrated with air of uranyl acetate and lead nitrate, in the pH range 3–9. For uranium, the experiments were also repeated in anoxic (N2) atmosphere. The amount of metal ions adsorbed onto the titania medium was quantified by measurements of the surface coverage expressed in atomic percent, by recording high-resolution XPS spectra in the Ti2p, U4f and Pb4f photoelectron regions. Adsorption of the uranyl species in air atmosphere as a function of pH showed an adsorption edge near pH 4 with a maximum at pH 7. At higher pH the presence of very stable uranyl–carbonate complexes prevented any further adsorption. Further adsorption increased until pH 8.5 was obtained when the uranyl solution was purged from dissolved CO2. Lead ion showed a sorption edge at pH 6, with a maximum uptake at pH 8. The results showed that the uptake of uranium and lead on the selected titania medium is remarkably sensitive to the solution pH. This study demonstrates the reliability of this type of material for treating water polluted with heavy metals as well as leachates from radioactive nuclear wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Samad, H., & Watson, P. R. (1998). An XPS study of the Adsorption of lead on goethite (ά-FeOOH). Applied Surface Science, 136(1–2), 46–54.

    Article  CAS  Google Scholar 

  • Allen, G. C., & Holmes, N. R. (1993). Mixed valency behaviour in some uranium oxides studies by X-ray photoelectron spectroscopy. Canadian Journal of Applied Chemistry, 38(5), 124–130.

    CAS  Google Scholar 

  • Allen, G. C., Tucker, P. M., & Tyler, J. W. (1982). Oxidation of uranium dioxide at 298 K studied by using X-ray photoelectron spectroscopy. Journal of Physical Chemistry, 86(2), 224–228.

    Article  CAS  Google Scholar 

  • Amadelli, R., Maldotti, A., Sostero, S., & Carassiti, V. (1991). Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions. Journal of the Chemical Society Faraday Transactions, 87(19), 3267–3273.

    Article  CAS  Google Scholar 

  • Angela, A. (2010). Impero. Mondadori, Milano: Viaggio nell’Impero di Roma seguendo una moneta.

    Google Scholar 

  • Bang, S., Patel, M., Lipponcott, L., & Meng, X. (2005). Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 60(3), 389–397.

    Article  CAS  Google Scholar 

  • Boily, J.-F., & Ilton, E. S. (2008). An independent confirmation of the correlation of Uf4 primary peaks and satellite structures of UVI UV and UIV in mixed valence uranium oxides by two-dimensional correlation spectroscopy. Surface Science, 602(24), 3637–3646.

    Article  CAS  Google Scholar 

  • Bonato, M. (2010). Metal oxide nanofabricated structures for the purification of water containing uranium, lead and arsenic. Ph.D. thesis. Bristol, UK: University of Bristol.

    Google Scholar 

  • Bonato, M., Allen, G. C., & Scott, T. B. (2008). Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes. Micro & Nano Letters, 3(2), 56–61.

    Article  Google Scholar 

  • Bonato, M., Ragnarsdottir, K. V., Allen, G. C. (2009). TiO2 anatase nanotubes for the purification of uranium, arsenic and lead containing water: an X-ray Photoelectron Spectroscopy study. In A. Braun, P.A. Alivisatos, E. Figgemeier, J. A. Turner, J. Ye, E.A. Chandler (Eds.), MRS 2009 Spring Meeting, volume MRS Proceedings Volume 1171E of Symposium S. Material Research Society.

  • Bowell, R. J. (1994). Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3), 279–286.

    Article  CAS  Google Scholar 

  • Brannvall, M.-L., Bindler, R., Emteryd, O., & Renberg, I. (1997). Stable isotope and concentration records of atmospheric lead pollution in peat and lake sediments in Sweden. Water, Air, and Soil Pollution, 100(3–4), 243–252.

    Article  CAS  Google Scholar 

  • Chen, Y., & Dionysiou, D. D. (2008). Sol-gel synthesis of nanostructured TiO 2 films for water purification in sol-gel methods for materials processing (pp. 67–75). Netherlands: Springer.

    Google Scholar 

  • Chen, D., & Ray, A. K. (2001). Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science, 56(4), 1561–1570.

    Article  CAS  Google Scholar 

  • Chen, J., Ollis, D. F., Rulkens, W. H., & Bruning, H. (1999). Photocatalyzed deposition and concentration of soluble uranium(VI) from TiO2 suspensions. Colloids and Surfaces, 151(1–2), 339–349.

    CAS  Google Scholar 

  • Dalton, J. S., Janes, P. A., Jones, N. G., Nicholson, J. A., Hallam, K. R., & Allen, G. C. (2002). Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environmental Pollution, 120(2), 415–422.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270–275.

    Google Scholar 

  • Eliet, V., & Bidoglio, G. (1998). Kinetic of the laser-induced photoreduction of U(VI) in aqueous suspension of TiO2 particles. Environmental Science and Technology, 32(20), 3155–3161.

    Article  CAS  Google Scholar 

  • Fergusson, J. E. (1986). Lead: petrol lead in the environment and its contribution to human blood lead levels. Science of the Total Environment, 50, 1–54.

    Article  CAS  Google Scholar 

  • Fuerstenau, M. C., & Palmer, B. R. (1976). Flotation, volume 1 of A.M. Gaudin memorial volume. New York: AIME Inc.

    Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 37(5358), 238–239.

    Google Scholar 

  • Gavrilescu, M., Pavel, L. V., & Cretescu, I. (2009). Characterization and remediation of soils contaminated with uranium. Journal of Hazardous Materials, 163(2–3), 475–510.

    Article  CAS  Google Scholar 

  • Gidikova, P., & Deliradev, R. (1998). Subscribed content air lead pollution and lead exposure of experimental animals and children in Stara Zagora town (Bulgaria). International Journal of Environmental Health Research, 8(4), 303–313.

    Article  CAS  Google Scholar 

  • Gong, D., Grimes, C. G., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., & Dickey, E. C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 16(12), 3331–3334.

    Article  CAS  Google Scholar 

  • Gupta, A. R., & Venkatarami, B. (1988). Sorption of uranyl ions on hydrous oxides. a new surface hydrolysis model. Bulletin of the Chemical Society of Japan, 61(4), 1357–1362.

    Article  CAS  Google Scholar 

  • Harrison, R. M. (2001). Pollution: causes, effects and control (4th ed.). London: Royal Society of Chemistry.

    Google Scholar 

  • Ho, C. H., & Doern, D. (1985). The adsorption of uranyl species on a hematite sol. Canadian Journal of Chemistry, 63(5), 1100–1104.

    Article  CAS  Google Scholar 

  • Ilton, E. S., Boily, J., & Bagus, P. S. (2007). Beam induced reduction of U(VI) during X-ray photoelectron spectroscopy: the utility of the U4f satellite structure for identifying uranium oxidation states in mixed valence uranium oxides. Surface Science, 601(4), 908–916.

    Article  CAS  Google Scholar 

  • Jaffrezic-Renault, N., & Andreade-Martins, H. (1980). Study of retention mechanism of uranium on titanium dioxide. Journal of Radioanalytical Chemistry, 55(2), 307–316.

    Article  CAS  Google Scholar 

  • Jezequel, H., & Chu, K. H. (2006). Removal of arsenate from aqueous solution by adsorption on titanium dioxide nanoparticles. Journal of Environmental Science & Health Part A, 41(8), 1519–1528.

    CAS  Google Scholar 

  • Lieser, K. H., & Thybusch, B. (1988). Sorption of uranyl ions on hydrous titanium dioxide. Fresenius’ Journal of Analytical Chemistry, 332(4), 351–357.

    Article  CAS  Google Scholar 

  • Liu, Q., & Laskowski, J. S. (1989). The interactions between dextrin and metal hydroxides in aqueous solutions. Journal of Colloid and Interface Science, 130(1), 101–104.

    Article  CAS  Google Scholar 

  • Liu, Q., & Liu, Y. (2003). Distribution of Pb(II) species in aqueous solutions. Journal of Colloid and Interface Science, 268(1), 266–269.

    Article  CAS  Google Scholar 

  • Macák, J. M., Tsuchiya, H., & Schmuki, P. (2005). High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Edition, 44(14), 2100–2102.

    Article  Google Scholar 

  • Marani, D., Macchi, G., & Pagano, M. (1995). Lead precipitaiton in the presence of sulphate and carbonate; testing the thermodynamic predictions. Water Research, 29(4), 1085–1092.

    Article  CAS  Google Scholar 

  • Mercier, L., & Pinnavaia, T. J. (1998). Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptake. Environmental Science and Technology, 32(18), 2749–2754.

    Article  CAS  Google Scholar 

  • Mercier-Bion, F., Drot, R., Ehrhardt, J., Lambert, J., Roques, J., & Simoni, E. (2010). X-ray photoreduction of U(VI)-bearing compounds. Surface and Interface Analysis, 43(4), 777–783.

    Article  Google Scholar 

  • Murruni, L., Leyva, G., & Litter, M. I. (2007). Photocatalytic removal of Pb(II) over TiO2 and Pt-TiO2 powders. Catalysis Today, 129(1–2), 127–135.

    Article  CAS  Google Scholar 

  • Murruni, L., Conde, F., Leyva, G., & Litter, M. I. (2008). Photocatalytic reduction of Pb(II) over TiO2: new insight on the effect of different electron donors. Applied Catalysis B: Environmental, 84(3–4), 563–569.

    Article  CAS  Google Scholar 

  • Oeh, U., Priest, N. D., Roth, P., Ragnarsdottir, K. V., Li, W. B., Höllriegl, V., Thirlwall, M. F., Michalke, B., Giussani, A., Schramel, P., & Paretzke, H. G. (2007). Measurements of daily urinary uranium excretion in German peacekeeping personnel and residents of the Kosovo region to assess potential intakes of depleted uranium (DU). Science of the Total Environment, 381(1–3), 77–87.

    Article  CAS  Google Scholar 

  • Piraux, J. J., Riga, J., Thibaut, E., Tenret-Noel, C., Caudano, R., & Virbis, J. J. (1977). Shake-up satellites in the X-ray photoelectron spectra of uranium oxides and fluorides. A band structure scheme for uranium dioxide, UO2. Chemical Physics, 22(1), 113–120.

    Article  Google Scholar 

  • Plant, J., Voulvoulis, N., & Ragnarsdottir, K. V. (2011). Pollutants, human health and the environment. A risk approach (p. 356). Hoboken, NJ: Wiley Blackwell.

    Book  Google Scholar 

  • Prikryl, J. D., Jain, A., Turner, D. R., & Pabalan, R. T. (2001). UraniumVI sorption behavior on silicate mineral mixtures. Journal of Contaminant Hydrology, 47(2–4), 241–253.

    Article  CAS  Google Scholar 

  • Ragnarsdottir, K. V., & Charlet, L. (2000). Uranium behaviour in natural environments. In: Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. London: Mineralogical Society.

  • Riba, O., Scott, T. B., Ragnarsdottir, K. V., & Allen, G. C. (2008). Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochimica et Cosmochimica Acta, 72(16), 4047–4057.

    Article  CAS  Google Scholar 

  • Savage, N., Chwieroth, B., Ginwalla, A., Patton, B. R., Akbar, S. A., & Dutta, P. K. (2001). Composite n-p semiconducting titanium dioxide as gas sensor. Sensors and Actuators B: Chemical, 79(1), 17–27.

    Article  Google Scholar 

  • Scott, T. B., Riba, T. O., & Allen, G. C. (2007). Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material. Geochimica et Cosmochimica Acta, 71(21), 5044–5053.

    Article  Google Scholar 

  • Sherman, D. M., Peacock, C. L., & Hubbard, C. G. (2008). Surface complexation of U(VI) on goethite (R-FeOOH). Geochimica et Cosmochimica Acta, 72(2), 298–310.

    Article  CAS  Google Scholar 

  • Tanaka, K., Harada, K., & Murata, S. (1986). Photocatalytic deposition of metal ions onto TiO2 powder. Solar Energy, 36(2), 159–161.

    Article  CAS  Google Scholar 

  • Torres, J., & Cervera-March, S. (1992). Kinetic of the photoassisted catalytic oxidation of Pb(II) in TiO2 suspensions. Chemical Engineering Science, 47(15–16), 3857–3862.

    Article  CAS  Google Scholar 

  • Tripathy, S. S., & Raichur, A. M. (2003). Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(V) from water. Chemical Engineering Journal, 138(1–3), 179–186.

    Google Scholar 

  • Tsunashima, A., Brindley, G. W., & Bastovanov, M. (1981). Adsorption of uranium from solutions by mentmorillonite; compositions ans properties of uranyl montmorillonites. Clays and Clay Minerals, 29(1), 10–16.

    Article  CAS  Google Scholar 

  • UNEP, United Nations Environment Programme (2001). Depleted uranium in Kosovo post-conflict environmental assessment. Technical report, UN.

  • Varghese, O. K., Gong, D., Paulose, M., Ong, K. G., Dickey, E. C., & Grimes, C. A. (2003). Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials, 15(7–8), 624–627.

    Article  CAS  Google Scholar 

  • Vohra, M., & Davis, A. P. (1997). Adsorption of Pb, NTA and Pb(II)-NTA onto TiO2. Journal of Colloid and Interface Science, 194(1), 59–67.

    Article  CAS  Google Scholar 

  • Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., & Gale, L. H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface and Interface Analysis, 3(5), 211–225.

    Article  CAS  Google Scholar 

  • Waite, T. D., Davies, J. A., Payne, T. E., Waychunas, G. A., & Xu, N. (1994). Uranium adsorption on ferrihydrite: application of a surface complexation model. Geochimica et Cosmochimica Acta, 58(24), 5465–5478.

    Article  CAS  Google Scholar 

  • Wazne, M., Meng, X., Korfiatis, G. P., & Christodoulatos, C. (2006). Carbonate effecto on exavalent uranium removal from water by nanocrystalline titanium dioxide. Journal of Hazardous Materials, 136(1), 47–51.

    Article  CAS  Google Scholar 

  • Xu, Y. M., Wang, R.-S., & Wu, F. (1999). Surface characters and adsorption behavior of Pb(II) onto a mesoporous titanosilicate molecular sieve. Journal of Colloid and Interface Science, 209(2), 380–385.

    Article  CAS  Google Scholar 

  • Yang, H., Li, W.-Y., & Rajeshwarm, K. (1999). Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. Journal of Photochemistry and Photobiology A, 123(1–3), 137–143.

    Article  CAS  Google Scholar 

  • Yoshida, T., Yamaguchi, T., Iida, Y., & Nakayama, S. (2003). XPS study of Pb(II) adsorption on -Al2O3 surface at high pH conditions. Journal of Nuclear Science and Technology, 40(9), 672–678.

    Article  CAS  Google Scholar 

  • Zhijun, G., Zhaoyun, Y., & Zuyi, T. (2004). Sorption of uranyl ions on TiO2: effect of contact time, ionic strength, concentration and humic acid. Journal of Radioanalytical and Nuclear Chemistry, 261(1), 157–162.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support (to MB) from the Marie Curie Early Stage Training Programme (MEST-CT-2005-020828) MISSION of the European Commission during the course of this work. Thanks to P. Heard for the preparation of the TEM sample, R. Vincent for the TEM images and diffraction pattern, and K. Hallam for the XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bonato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonato, M., Ragnarsdottir, K.V. & Allen, G.C. Removal of Uranium(VI), Lead(II) at the Surface of TiO2 Nanotubes Studied by X-Ray Photoelectron Spectroscopy. Water Air Soil Pollut 223, 3845–3857 (2012). https://doi.org/10.1007/s11270-012-1153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1153-1

Keywords

Navigation