Skip to main content
Log in

Copper Ions Adsorption from Aqueous Medium Using the Biosorbent Sugarcane Bagasse In Natura and Chemically Modified

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study evaluated the copper ion adsorption capacity of sugarcane bagasse in natura and chemically modified with citric acid and sodium hydroxide. Adsorption analyses in batch system were carried out in function of contact time with the adsorbent and adsorbate concentration. Flame atomic absorption spectrometry was used to determine the copper concentrations. Adsorption experimental data were fitted to Langmuir and Freundlich linear models, and the maximum adsorption capacity was estimated for copper ions in function of modifications. The chemical modifications were confirmed at 1,730 cm−1 peak in infrared spectra, referring to the carboxylate groups. The required time for the adsorption to reach equilibrium was 24 h and the kinetics follows the behavior described by the pseudo-second order equation. Besides, a significant improvement of the copper adsorption has been observed after the bagasse treatment, where the maximum adsorption capacity was 31.53 mg g−1 for copper using modified bagasse with nitric acid according to Langmuir isotherm linear model. The high uptake of copper ions from aqueous medium verified by chemically modified sugarcane bagasse makes this material an attractive alternative for effluent treatment and avoids environmental contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas, M., Nadeem, R., Zafar, M. N., & Arshad, M. (2008). Biosorption of chromium (III) and chromium (VI) by untreated and pretreated Cassia fistula biomass from aqueous solutions. Water, Air, and Soil Pollution, 191, 139–148.

    Article  CAS  Google Scholar 

  • Ajmal, M., Rao, R. A. K., Ahmad, R., & Ahmad, J. (2000). Adsorption studies on Citrus reticulate (fruit peel of orange): Removal and recovery of Ni (II) from electroplating wastewater. Journal of Hazardous Materials, B79, 117–131.

    Article  Google Scholar 

  • Albertini, S., Carmo, L. F., & Prado-Filho, L. G. (2007). Use of sawdust and pulp from cane as adsorbents of cadmium. Ciência Tecnologia Alimentos, 27(1), 113–118.

    CAS  Google Scholar 

  • Annadurai, A., Juang, R. S., & Lee, D. J. (2002). Adsorption of heavy metals from water using banana and orange peels. Water Science and Technology, 47, 185–190.

    Google Scholar 

  • Chen, J. P., & Wu, S. (2004). Simultaneous adsorption of copper ions and humic acid onto an activated carbon. Journal of Colloid and Interface Science, 280, 334–342.

    Article  CAS  Google Scholar 

  • Cohen-Shoel, N., Ilzycer, D., Gilath, I., & Tel-Or, E. (2002). The involvement of pectin in Sr2+ biosorption by Azolla. Water, Air, and Soil Pollution, 135, 195–205.

    Article  CAS  Google Scholar 

  • Dahiya, S., Tripathi R. M., & Hegde A. G. (2008). Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. Journal of Hazardous Materials, 150, 376–386.

    Google Scholar 

  • Doğan, M., Alkan, M., Türkyılmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, B109, 141–148.

    Article  Google Scholar 

  • Environmental Protection Agency (EPA). http://www.epa.gov/safewater/contaminants/index.html. Accessed 20 Mach 2010.

  • Feng, N., Guo, X., & Liang, S. (2009). Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials, 164, 1286–1292.

    Article  CAS  Google Scholar 

  • Ferreira, J. M., Silva, F. L. H., Alsina, O. L. S., Oliveira, L. S. C., Cavalcanti, E. B., & Gomes, W. C. (2007). Equilibrium and kinetic study of Pb2+ biosorption by Saccharomyces cerevisiae. Quimica Nova, 30, 1188–1193.

    CAS  Google Scholar 

  • Gaetke, L. M., & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189, 147–163.

    Article  CAS  Google Scholar 

  • Gonçalves, M., Oliveira, L. C. A., & Guerreiro, M. C. (2008). Magnetic niobia as adsorbent of organic contaminants in aqueous medium: Effect of temperature and pH. Quimica Nova, 31, 518–522.

    Google Scholar 

  • Guerra, D. L., Airoldi, C., Lemos, V. P., Angélica, R. S., & Viana, R. R. (2008). Application of Zr/Ti-PILC in the adsorption process of Cu(II), Co(II) and Ni(II) using adsorption physico-chemical models and thermodinamics of the process. Quimica Nova, 31, 353–359.

    CAS  Google Scholar 

  • Han, R., Zhang, L., Song, C., Zhang, M., Zhu, H., & Zhang, L. (2010). Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydrate Polymers, 79, 1140–1149.

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., & Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solution. Bioresource Technology, 87, 129–132.

    Article  CAS  Google Scholar 

  • Karnitz Júnior, O., Gurgel, L. V. A., De Freitas, R. P., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydrate Polymers, 77, 643–650.

    Article  Google Scholar 

  • Karnitz Júnior, O., Gurgel, L. V. A., & Gil, L. F. (2010). Removal of Ca(II) and Mg(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse grafted with EDTA dianhydride (EDTAD). Carbohydrate Polymers, 79, 184–191.

    Article  Google Scholar 

  • Khormaei, M., Nasernejad, B., Edrisi, M., & Eslamzadeh, T. (2007). Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous Materials, 149, 269–274.

    Article  CAS  Google Scholar 

  • Marshall, W. E., Wartelle, L. H., Boler, D. E., Johns, M. M., & Toles, C. A. (1999). Enhanced metal adsorption by soybean hulls modified with nitric acid. Bioresource Technology, 69, 263–268.

    Article  CAS  Google Scholar 

  • Mehrasbi, M. R., Farahmandkia, Z., Taghibeigloo, B., & Taromi, A. (2009). Adsorption of lead and cadmium from aqueous solution by using almond shells. Water, Air, and Soil Pollution, 199, 343–351.

    Article  CAS  Google Scholar 

  • National Council on the Environment (CONAMA). Resol. n°357 de 17/03/2005 http://www.mma.gov.br/port/conama/legiano1.cfm?codlegitipo=3&ano=2005/ (accessed 10 July 2009)

  • Noeline, B. F., Manohar, D. M., & Anirudhan, T. S. (2005). Kinetic and equilibrium modeling of lead (II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Separation and Purification Technology, 45, 131–140.

    Article  CAS  Google Scholar 

  • Oliveira, F. C., Mattiazzo, M. E., & Abreu JR, C. H. (2002). Movement of heavy metals in an Oxisol fertilized with municipal solid waste compost. Pesquisa Agropecuária Brasileira, 37, 1787–1793.

    Google Scholar 

  • Özacar, M., & Şengil, İ. A. (2003). Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of Hazardous Materials, B98, 211–224.

    Article  Google Scholar 

  • Özcan, A., Özcan, A. S., Tunali, S., Akar, T., & Kiran, I. (2005). Determination of the equilibrium kinetic and thermodynamic parameters of adsorption of copper (II) ions onto seeds of capsicum annuum. Journal of Hazardous Materials, B124, 200–208.

    Article  Google Scholar 

  • Ozsoy, H. D., & Kumbur, H. (2006). Adsorption of Cu (II) ions on cotton boll. Journal of Hazardous Materials, B136, 911–916.

    Article  Google Scholar 

  • Pérez-Marín, A. B., Zapata, V. M., Ortuño, J. F., Aguilar, M., Sáez, J., & Lloréns, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orangewaste. Journal of Hazardous Materials, B139, 122–131.

    Article  Google Scholar 

  • Pergher, S. B. C., Caovilla, M., Detoni, C., & Machado, N. R. C. F. (2005). Remoção de Cu+2 de soluções aquosas em zeólita NaX. Efeito da granulometria. Quimica Nova, 28, 397–401.

    CAS  Google Scholar 

  • Rodrigues, R. F., Trevezoli, R. L., Santos, L. R. G., Leão, V. A., & Botaro, V. R. (2006). Heavy metals sorption on treated wood sawdust. Engenharia Sanitária Ambiental, 11(1), 21–26.

    Google Scholar 

  • Sari, A., Tuzen, M., Citak, D., & Soylak, M. (2007). Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 149, 283–291.

    Article  CAS  Google Scholar 

  • Schvartsman, S. (1991). Intoxicações agudas (4th ed., pp. 214–215). São Paulo: Sarvier.

    Google Scholar 

  • Sodré, F. F., Lenzi, E., & Costa, A. C. (2001). Applicability of adsorption models to the study of copper behaviour in clayey soils. Quimica Nova, 24, 324–330.

    Google Scholar 

  • Sousa, F. W., Moreira, S. A., Oliveira, A. G., Cavalcante, R. M., Nascimento, R. F., & Rosa, M. F. (2007). The use of green coconut shells as absorbents in the toxic metals. Quimica Nova, 30(5), 1153–1157.

    CAS  Google Scholar 

  • Tarley, C. R. T., & Arruda, M. A. Z. (2003). Adsorbents natural and potential applications of natural sponge (Luffa cylindrica) the removal of lead in wastewater laboratory. Revista Analítica, 4, 26–31.

    Google Scholar 

  • Tarley, C. R. T., & Arruda, M. A. Z. (2004). Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents. Chemosphere, 54, 987–995.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by UNIVERSIDADE PARANENSE, UNIPAR. The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Cardoso Dragunski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dos Santos, V.C.G., De Souza, J.V.T.M., Tarley, C.R.T. et al. Copper Ions Adsorption from Aqueous Medium Using the Biosorbent Sugarcane Bagasse In Natura and Chemically Modified. Water Air Soil Pollut 216, 351–359 (2011). https://doi.org/10.1007/s11270-010-0537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0537-3

Keywords

Navigation