Skip to main content
Log in

The use of Vertical Flow Constructed Wetlands in Wastewater Treatment

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Alternative to conventional (i.e., the commonly used biological plants) wastewater treatment systems are presented which are appropriate for small communities and settlements. These systems are the natural treatment systems. The emphasis here is given on vertical downflow flow constructed wetlands (VF CWs). First, advantages and disadvantages of these systems are presented compared to conventional systems. Applications in treating different types of wastewaters and various pollutants are summarized. Components, treatment processes and performance are also presented. General description of facility compartments, layout and operation is given. Design guidelines on recommended unit areas, organic loading rates and hydraulic loading rates from various EU countries for VF CW systems used in municipal wastewater treatment, and data on the efficiency of such systems are also presented. Maintenance and operation issues are discussed. Finally, investment and operation and maintenance costs are addressed based on data from full-scale facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abira MA, Van Bruggen JJA, Denny P (2005) Potential of a tropical subsurface constructed wetland to remove phenol from pre-treated pulp and papermill wastewater. Water Sci Technol 51(9):173–176

    Google Scholar 

  • Abou-Elela SI, Hellal MS (2012) Municipal wastewater treatment using vertical flow constructed wetlands planted with canna, Phragmites and Cyprus. Ecol Eng 47:209–213

    Article  Google Scholar 

  • Aguilar JRP, Cabriales JJP, Vega MM (2008) Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. International Journal of Phytoremediation 10:359–370

    Article  Google Scholar 

  • Akratos CS, Tsihrintzis VA (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 29(2):173–191. doi:10.1016/j.ecoleng.2006.06.013

    Article  Google Scholar 

  • Akratos CS, Papaspyros JNE, Tsihrintzis VA (2008) An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chemical Enginnering Journal 143:96–100

    Article  Google Scholar 

  • Amon JP, Agrawal A, Shelley ML, Opperman BC, Enright MP, Clemmer ND, Slusser T, Lach J, Sobolewski T, Gruner W, Entingh AC (2007) Development of a wetland constructed for the treatment of groundwater contaminated by chlorinated ethenes. Ecol Eng 30:51–66

    Article  Google Scholar 

  • Arias CA, Brix H, Johansen N-H (2003) Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system equipped with a calcite filter. Water Sci Technol 48(5):51–58

    Google Scholar 

  • Arias CA, Brix H, Marti E (2005) Recycling of treated effluents enhances removal of total nitrogen in vertical flow constructed wetlands. Journal of Environmental Science and Health-Part A 40:1431–1443

    Article  Google Scholar 

  • ATV Arbeitsblatt A262 (1998) Grundsätze für Bemessung und Betrieb von Pfanzenbeeten für Kommunales Abwasser bei Ausbaugröβen bis 1000 Einwohnerwertte. Juli 1998:2–10

    Google Scholar 

  • Austin D (2006) Influence of cation exchange capacity (CEC) in a tidal flow, flood and drain wastewater treatment wetland. Ecol Eng 28:35–43

    Article  Google Scholar 

  • Ávila C, Salas JJ, Martín I, Aragón C, García J (2013) Integrated treatment of combined sewer wastewater and stormwater in a hybrid constructed wetland system in southern Spain and its further reuse. Ecol Eng 50:13–20

    Article  Google Scholar 

  • Ayaz SC, Aktaş Ö, Findik N, Akça L (2012a) Phosphorus removal and effect of adsorbent type in a constructed wetland system. Desalin Water Treat 37:152–159

    Article  Google Scholar 

  • Ayaz SC, Aktaş Ö, Findik N, Akça L, Kinaci C (2012b) Effect of recirculation on nitrogen removal in a hybrid constructed wetland system. Ecol Eng 40:1–5

  • Babatunde AO, Zhao YQ (2010) Two strategies for improving animal farm wastewater treatment in reed beds. Environ Technol 31(12):1343–1348

    Article  Google Scholar 

  • Bahlo K (2000) Treatment efficiency of a vertical-flow reed bed with recirculation. Journal of Environmental Science and Health A 35(8):1403–1413

    Article  Google Scholar 

  • Barr MJ, Robinson HD (1999) Constructed wetlands for landfill leachate treatment. Waste Management and Research 17:498–504

    Article  Google Scholar 

  • Batty LC, Younger PL (2007) The effect of pH on plant litter decomposition and metal cycling in wetland mesocosms supplied with mine drainage. Chemosphere 66:158–164

    Article  Google Scholar 

  • Bedessem ME, Ferro AM, Hiegel T (2007) Pilot-scale constructed wetlands for petroleum contaminated groundwater. Water Environment Research 79:581–586

    Article  Google Scholar 

  • Blazejewski R, Murat-Blazejewska S (1997) Soil clogging phenomena in constructed wetlands with subsurface flow. Water Sci Technol 35(5):183–188

    Article  Google Scholar 

  • Bodzek M, Łobos-Moysa E, Zamorowska M (2006) Removal of organic compounds from municipal landfill leachate in a membrane bioreactor. Desalination 198:16–23

    Article  Google Scholar 

  • Boutin C, Liénard A, Esser D (1997) Development of a new generation of reed-bed filters in France: first results. Water Sci Technol 35(5):315–322

    Article  Google Scholar 

  • Braeckevelt M, Reiche N, Trapp S, Wiessner A, Paschke H, Kuschk P, Kaestener M (2011) Chlorobenzene removal efficiencies and removal processes in a pilot-scale constructed wetland treating contaminated groundwater. Ecol Eng 37:903–913

    Article  Google Scholar 

  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144(3):967–975

    Article  Google Scholar 

  • Brisson J, Chazarenc F (2009) Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Sci Total Environ 407:3923–3930

    Article  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35(5):11–17

    Article  Google Scholar 

  • Brix H, Arias AC (2005) The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: new Danish guidelines. Ecol Eng 25:491–500

    Article  Google Scholar 

  • Bubba MD, Checchini L, Pifferi C, Zanieri L, Lepri L (2004) Olive mill wastewater treatment by a pilot-scale subsurface horizontal flow (SSF-h) constructed wetland. Ann Chim 94:875–887

    Article  Google Scholar 

  • Bulc TG (2006) Longterm performance of a constructed wetland for landfill leachate treatment. Ecol Eng 26:365–374

    Article  Google Scholar 

  • Bulc TG, Ojstrsek A (2008) The use of constructed wetland for dye-rich textile wastewater treatment. J Hazard Mater 155(1–2):76–82

    Article  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res 41:1790–1798

    Article  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2009) Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresour Technol 100:3205–3213

    Article  Google Scholar 

  • Calheiros CSC, Teixeira A, Pires C, Franco AR, Duque AF, Crispim LFC, Moura SC, Castro PML (2010) Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. Water Res 44:5032–5038

    Article  Google Scholar 

  • Caselles-Osorio A, García J (2007) Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. Sci Total Environ 378(3):253–262

    Article  Google Scholar 

  • Chang J-J, Wu S-Q, Dai Y-R, Liang W, Wu Z-B (2012) Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater. Ecol Eng 44:152–159

    Article  Google Scholar 

  • Chazarenc F, Gagnon V, Comeau Y, Brisson J (2009) Effect of plant and artificial aeration on solids accumulation and biological activities in constructed wetlands. Ecol Eng 35:1005–1010

    Article  Google Scholar 

  • Cheng SP, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325

    Article  Google Scholar 

  • Cheng B, Hu CW, Zhao YJ (2011) Effects of plants development and pollutant loading on performance of vertical subsurface flow constructed wetlands. Int J Environ Sci Technol 8(1):177–186

    Article  Google Scholar 

  • Choudhary AK, Kumar S, Sharma C (2013) Removal of chlorophenolics from pulp and paper mill wastewater through constructed wetland. Water Environment Research 85(1):54–62

    Article  Google Scholar 

  • Coleman J, Hench K, Garbutt K, Sexstone A, Bissonnette G, Skousen J (2001) Treatment of domestic wastewater by three plant species in constructed wetlands. Water Air and Soil Pollution 128:283–295

    Article  Google Scholar 

  • Collins B, McArthut JV, Sharitza RR (2004) Plant effects on microbial assemblages and remediation of acidic coal pile runoff in mesocosm treatment wetlands. Ecol Eng 23:107–115

    Article  Google Scholar 

  • Cooper P (1999) A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Sci Technol 40(3):1–9

    Article  Google Scholar 

  • Cooper P (2001) Nitrification and denitrification in hybrid constructed wetlands systems. In: Vymazal J (ed) Transformation of nutrients in natural and constructed wetlands. Backhuys Publishers, Leiden, pp 256–270

    Google Scholar 

  • Cooper PF, Job GD, Green MB, Shutes RBE (1996) Reed beds and constructed wetlands for wastewater treatment. Water Research Center Publications, Swindon, 184p

    Google Scholar 

  • Cooper P, Smith M, Maynard H (1997) The design and performance of a nitrifying vertical-flow reed bed treatment system. Water Sci Technol 35(5):215–221

    Article  Google Scholar 

  • Cooper P, Griffin P, Humphries S, Pound A (1999) Design of a hybrid reed bed system to achieve complete nitrification and denitrification of domestic sewage. Water Sci Technol 40(3):283–289

    Article  Google Scholar 

  • Crites RW, Middlebrooks EJ, Reed SC (2006) Natural wastewater treatment systems. Taylor & Francis-CRC Press, Boca Raton, 552p

    Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Cui L-H, Liu W, Zhu X-Z, Ma M, Huang X-H, Xia Y-Y (2006) Performance of hybrid constructed wetland systems for treating septic tank effluent. J Environ Sci 18(4):665–669

    Google Scholar 

  • Cui L, Feng J, Ouyang Y, Deng P (2012) Removal of nutrients from septic effluent with re-circulated hybrid tidal flow constructed wetland. Ecol Eng 46:112–115

    Article  Google Scholar 

  • Davies TH, Cottingham PD (1994) The use of constructed wetlands for treating industrial effluent (textile dyes). Water Sci Technol 29(4):227–232

    Google Scholar 

  • Demchak J, Morrow J, Skousen J (2001) Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania. Geochemistry: Exploration, Environment, Analysis 1(1):71–80

    Google Scholar 

  • Dinges R (1982) Natural Systems for Water Pollution Control. van Nostrand Reinhold Co., New York, 252p

    Google Scholar 

  • Dixon A, Mathew S, Burkitt T (2003) Assessing the environmental impact of two options for small-scale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach. Ecol Eng 20(4):297–308

    Article  Google Scholar 

  • Drizo A, Frost AC, Grace J, Smith AK (1999) Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Res 33(17):3595–3602

    Article  Google Scholar 

  • Drizo A, Forget C, Chapuis RP, Comeau Y (2006) Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Res 40:1547

    Article  Google Scholar 

  • Economopoulou MA, Tsihrintzis VA (2002) Sensitivity analysis of stabilization pond system design parameters. Environ Technol 23(3):273–286

    Article  Google Scholar 

  • Economopoulou MA, Tsihrintzis VA (2003) Design methodology and area sensitivity analysis of horizontal subsurface flow constructed wetlands. Water Resour Manag 17(2):147–174

    Article  Google Scholar 

  • Economopoulou MA, Tsihrintzis VA (2004) Design methodology of free-water surface constructed wetlands. Water Resour Manag 18(6):541–565

    Article  Google Scholar 

  • Etnier C, Guterstam B (eds.) (1997) Ecological Engineering for Wastewater Treatment, 2nd Ed., CRC Press, Boce Raton, FL, USA, 480p, ISBN 9780873719902

  • Fan J, Liang S, Zhang B, Zhang J (2013) Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. Environ Sci Pollut R 20(4):2448–2455

    Article  Google Scholar 

  • Farahbakshazad N, Morrison GM (1997) Ammonia removal processes for urine in an upflow macrophyte system. Environ Sci Technol 31:3314–3317

    Article  Google Scholar 

  • Farahbakshazad N, Morrison GM, Filho ES (2000) Nutrient removal in a vertical upflow wetland in Piracicaba, Brazil. AMBIO: A Journal of the Human Environment 29(2):74–77

    Article  Google Scholar 

  • Farnet AM, Prudent P, Ziarelli F, Domeizel M, Gros R (2009) Solid-state 13C NMR to assess organic matter transformation in a subsurface wetland under cheese-dairy farm effluents. Bioresour Technol 100:4899–4902

    Article  Google Scholar 

  • Fuchs VJ, Mihelcic JR, Gierke JS (2011) Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions. Water Res 45:2073–2081

    Article  Google Scholar 

  • Gaboutloeloe GK, Chen S, Barber ME, Stöchle CO (2009) Combinations of horizontal and vertical flow constructed wetlands to improve nitrogen removal. Water Air and Soil Pollution: Focus 9:279–286

    Article  Google Scholar 

  • Gagnon V, Chazarenc F, Kõiv M, Brisson J (2012) Effect of plant species on water quality at the outlet of a sludge treatment wetland. Water Res 46:5305–5315

    Article  Google Scholar 

  • Gagnon V, Chazarenc F, Comeau Y, Brisson J (2013) Effect of plant species on sludge dewatering and fate of pollutants in sludge treatment wetlands. Ecol Eng 61(B):593–600

    Article  Google Scholar 

  • García-Pérez A, Harrison M, Grant B (2011) Recirculating vertical flow constructed wetland for on-site sewage treatment: an approach for a sustainable ecosystem. Journal of Water and Environmental Technology 9(1):39–46

    Article  Google Scholar 

  • Ghosh D, Gopal B (2010) Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland. Ecol Eng 36:1044–1051

    Article  Google Scholar 

  • Gikas GD, Tsihrintzis VA (2010) On-site treatment of domestic wastewater using a small-scale horizontal subsurface flow constructed wetland. Water Sci Technol 62(3):603–614. doi:10.2166/wst.2010.172

    Article  Google Scholar 

  • Gikas GD, Tsihrintzis VA (2012) A small-size vertical flow constructed wetland for on-site treatment of household wastewater. Ecol Eng 44:337–343. doi:10.1016/j.ecoleng.2012.04.016

    Article  Google Scholar 

  • Gikas GD, Tsihrintzis VA (2014) Municipal wastewater treatment using constructed wetlands. Water Utility Journal 8:57–65

    Google Scholar 

  • Gikas GD, Akratos CS, Tsihrintzis VA (2007) Performance monitoring of a vertical flow constructed wetland treating municipal wastewater. Global NEST Journal 9(3):277–285

    Google Scholar 

  • Gikas GD, Tsihrintzis VA, Akratos CS (2011) Performance and modeling of a vertical flow constructed wetland – maturation pond system. Journal of Environmental Science and Health-Part A 46(7):692–708. doi:10.1080/10934529.2011.571575

    Article  Google Scholar 

  • Gikas GD, Tsakmakis ID, Tsihrintzis VA (2013) Treatment of olive mill wastewater in pilot-scale natural systems, Proc. 8th International Conference of EWRA “water Resources Management in an Interdisciplinary and Changing Context”, Porto, 26-29 June 2013, paper #232, pp. 1207-1216

  • Gikas GD, Papaevangelou VA, Moutsopoulos K, Tsihrintzis VA (2017) Evaluation of clogging in HSF pilot-scale CWs using tracer experiments, Proc. 10th congress of the European water Resources association (EWRA), July 5-9, 2017, Athens

  • Giraldi D, Vitturi MM, Iannelli R (2010) FITOVERT: a dynamic numerical model of subsurface vertical flow constructed wetlands. Environ Model Softw 25:633–640

    Article  Google Scholar 

  • Gkika D, Gikas GD, Tsihrintzis VA (2014) Construction and operation costs of constructed wetlands treating wastewater. Water Sci Technol 70(5):803–810. doi:10.2166/wst.2014.294

    Article  Google Scholar 

  • Gkika D, Gikas GD, Tsihrintzis VA (2015) Environmental footprint of constructed wetlands treating wastewater. Journal of Environmental Science and Health-Part A 50(6):631–638. doi:10.1080/10934529.2015.994970

    Google Scholar 

  • Gottschall R, Boutin C, Crolla A, Kinsley C, Champagne P (2007) The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater Ontario, Canada. Ecol Eng 29:154–163

    Article  Google Scholar 

  • Grafias P, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E (2010) Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Res 44:2773–2780

    Article  Google Scholar 

  • Gross A, Sklarz MY, Yakirevich A, Soares MIM (2008) Small scale recirculating vertical flow constructed wetland (RVFCW) for the treatment and reuse of wastewater. Water Sci Technol 58(2):487–494

    Article  Google Scholar 

  • Hallberg KB, Johnson DB (2005) Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci Total Environ 338:53–66

    Article  Google Scholar 

  • Hammer DA (1989) Constructed wetlands for wastewater treatment – municipal. Lewis Publishers-CRC Press, Boca Raton, Industrial and Agricultural, 831p

    Google Scholar 

  • Hathaway JM, Cook MJ, Evans RO (2010) Nutrient removal capability of a constructed wetland receiving groundwater contaminated by swine lagoon seepage. Transaction of the American Society of Agricultural and Biological Engineers 53:1–9

    Google Scholar 

  • He LS, Liu HL, Xi BD, Zhu YB (2006) Enhancing treatment efficiency of swine wastewater by effluent recirculation in vertical-flow constructed wetland. J Environ Sci 18(2):221–226

    Google Scholar 

  • Herouvim E, Akratos CS, Tekerlekopoulou A, Vayenas DV (2011) Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetland. Ecol Eng 37:931–939

    Article  Google Scholar 

  • Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R, Martín-Villacorta J, Bécares E, Bayona JM (2010) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewater. Water Res 44:3669–3678

    Article  Google Scholar 

  • Hu YS, Zhao YQ, Zhao XH, Kumar JLG (2012) Comprehensive analysis of step-feeding strategy to enhance biological nitrogen removal in alum sludge-based tidal flow constructed wetlands. Bioresour Technol 111:27–35

    Article  Google Scholar 

  • Hua GF, Zhu W, Zhao LF, Huang JY (2010) Clogging pattern in vertical-flow constructed wetlands: insight from a laboratory study. J Hazard Mater 180:668–674

    Article  Google Scholar 

  • Hunt PG, Poach ME (2001) State of the art for animal wastewater treatment in constructed wetlands. Water Sci Technol 44:19–25

    Google Scholar 

  • Hunt PG, Matheny TA, Szogi AA (2003) Denitrification in constructed wetlands used for treatment of swine wastewater. J Environ Qual 32:727–735

    Article  Google Scholar 

  • Iamchaturapatr J, Yi SW, Rhee JS (2007) Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecol Eng 29(3):287–293

    Article  Google Scholar 

  • Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Applied Environmental Microbiology 69:5060–5069

    Article  Google Scholar 

  • Idris SM, Jones PL, Salzman SA, Croatto G, Allinson G (2012) Evaluation of the giant reed (Arundo donax) in horizontal subsurface flow wetlands for the treatment of recirculating aquaculture system effluent. Environ Sci Pollut R 19(4):1159–1170

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  Google Scholar 

  • Justin MZ, Zupancic M (2009) Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination 24:157–168

    Article  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press/Lewis Publishers, Boca Raton

    Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands, second edn. CRC Press, Boca Raton

    Google Scholar 

  • Kadlec RH, Zmarthie LA (2010) Wetland treatment of leachate from a closed landfill. Ecolological Engineering 36:946–957

    Article  Google Scholar 

  • Kapellakis IE, Paranychianakis V, Tsagkarakis KP, Angelakis AN (2012) Treatment of olive mill wastewater with constructed wetlands. Water (Switzerland) 4(1):260–271

    Google Scholar 

  • Karim MR, Manshadi FD, Karpiscak MM., Gerba, C.P. 2004. The persistence and removal of enteric pathogens in constructed wetlands. Water Res 38:1831–1837

  • Kassenga GR, Pardue JH, Blair S, Ferraro T (2003) Treatment of chlorinated volatile organic compounds in upflow wetland mesocosms. Ecol Eng 19:305–323

    Article  Google Scholar 

  • Kayser K, Kunst S, Fehr G, Voermanek H (2003) Controlling a combined lagoon/reed bed system using the oxidation-reduction potential (ORP). Water Sci Technol 48(5):167–174

    Google Scholar 

  • Kent DM (ed) (1994) Applied wetlands science and technology. Lewis Publishers-CRC Press, Boca Raton, 435p

    Google Scholar 

  • Kern J, Idler C, Carlow G (2000) Removal of fecal coliforms and organic matter from dairy farm wastewater in a constructed wetland under changing climate conditions. Journal of Environmental Science and Health-Part A 35(8):1445–1461

    Article  Google Scholar 

  • Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manag 90:3451–3457

    Article  Google Scholar 

  • Knowles P, Dotro G, Nivala J, García J (2011) Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecol Eng 37:99–112

    Article  Google Scholar 

  • Kõiv M, Kriipsalu M, Vohla C, Mander Ü (2009) Hydrated oil shale ash and mineralized peat as alternative filter materials for landfill leachate treatment in vertical flow constructed wetlands. Fresenius Environ Bull 18(2):189–195

    Google Scholar 

  • Konnerup D, Trang NTD, Brix H (2011) Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics. Aquaculture 313(1):57–64

    Article  Google Scholar 

  • Korboulewsky N, Wang R, Baldy V (2012) Purification processes involved in sludge treatment by a vertical flow wetland system: focus on the role of the substrate and plants on N and P removal. Bioresour Technol 105:9–14

    Article  Google Scholar 

  • Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wiessner A, Kästner M, Müller RA (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Engineering in Life Sciences 4(5):403–411

    Article  Google Scholar 

  • Kotti EP, Gikas GD, Tsihrintzis VA (2010) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale free water surface flow constructed wetlands. Ecol Eng 36(7):862–875. doi:10.1016/j.ecoleng.2010.03.002

    Article  Google Scholar 

  • Kotti IP, Sylaios GK, Tsihrintzis VA (2013) Fuzzy logic models for BOD removal prediction in free-water surface constructed wetlands. Ecol Eng 51:66–74

    Article  Google Scholar 

  • Kotti IP, Sylaios GK, Tsihrintzis VA (2016) Fuzzy logic models for nitrogen and phosphorus removal prediction in free-water surface constructed wetlands, environmental processes 3(Supp 1):S65–S79. DOI. doi:10.1007/s40710-016-0177-8

  • Kucuk OS, Sengul F, Kapdan IK (2003) Removal of ammonia from tannery effluents from a red bed constructed wetland. Water Sci Technol 48:179–186

    Google Scholar 

  • Kurzbaum E, Kirzhner F, Sela S, Zimmels Y, Armon R (2010a) Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm. Water Res 44:5021–5031

    Article  Google Scholar 

  • Kurzbaum E, Zimmels Y, Armon R (2010b) Isolation of a Halotolerant Streptomyces sp. from a constructed wetland that biodegrade phenol and various biopolymers. Actinomycetologica 24(2):31–38

    Article  Google Scholar 

  • Langergraber G (2003) Simulation of subsurface flow constructed wetlands - results and further research needs. Water Sci Technol 48:157–166

  • Langergraber G (2005) The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study. Water Sci Technol 51(9):213–223

    Google Scholar 

  • Langergraber G, Haberl R, Laber J, Pressl A (2003) Evaluation of substrate clogging processes in vertical flow constructed wetlands. Water Sci Technol 48(5):25–34

    Google Scholar 

  • Langergraber G, Prandtstetten C, Pressl A, Rohrhofer R, Haberl R (2007) Optimization of subsurface vertical flow constructed wetlands for wastewater treatment. Water Sci Technol 55(7):71–78

    Article  Google Scholar 

  • Lavrova S, Koumanova B (2010) Influence of recirculation in a lab-scale vertical flow constructed wetland on the treatment efficiency of landfill leachate. Bioresour Technol 101:1756–1761

    Article  Google Scholar 

  • Lee B-H, Scholz M (2007) What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecol Eng 29:87–95

    Article  Google Scholar 

  • Lee C-Y, Lee C-C, Lee F-Y, Tseng S-K, Liao C-J (2004) Performance of subsurface flow constructed wetland taking pre-treated swine effluent under heavy loads. Bioresour Technol 92:173–179

    Article  Google Scholar 

  • Lee B-H, Scholz M, Horn A (2005) Constructed wetlands: treatment of concentrated storm water runoff (part a). Environ Eng Sci 23(2):191–202

    Google Scholar 

  • Lee MS, Drizo A, Rizzo DM, Druschel G, Hayden N, Twohig E (2010) Evaluating the efficiency and temporal variation of pilot-scale constructed wetlands and steel slag phosphorus removing filters for treating dairy wastewater. Water Res 44:4077–4086

    Article  Google Scholar 

  • Lian JJ, Xu SG, Zhang YM, Han CW (2013) Molybdenum(VI) removal by using constructed wetlands with different filter media and plants. Water Sci Technol 67(8):1859–1866

    Article  Google Scholar 

  • Liolios KA, Moutsopoulos KN, Tsihrintzis VA (2012) Modeling of flow and BOD fate in horizontal subsurface flow constructed wetlands. Chem Eng J 200-202:681–693. doi:10.1016/j.cej.2012.06.101

    Article  Google Scholar 

  • Liolios KA, Moutsopoulos KN, Tsihrintzis VA (2014a) Comparative modeling of HSF constructed wetland performance with and without evapotranspiration and rainfall. Environmental Processes 1(2):171–186. doi:10.1007/s40710-014-0019-5

    Article  Google Scholar 

  • Liolios KA, Moutsopoulos KN, Tsihrintzis VA (2014b) Numerical simulation of phosphorus removal in horizontal subsurface flow constructed wetlands. Desalin Water Treat 56(5):1282–1290. doi:10.1080/19443994.2014.983550

    Article  Google Scholar 

  • Liolios KA, Moutsopoulos KN, Tsihrintzis VA (2016) Modelling alternative feeding techniques in HSF constructed wetlands, environmental processes 3(S1):S47–S63. DOI. doi:10.1007/s40710-016-0175-x

  • Liu L, Liu C, Zheng J, Huang X, Wang Z, Liu Y, Zhu G (2013) Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands. Chemosphere 91(8):1088–1093

    Article  Google Scholar 

  • Luederitz V, Eckert E, Lange-Weber M, Lange A, Gersberg MR (2001) Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecol Eng 18:157–171

    Article  Google Scholar 

  • Machado AP, Urbano L, Brito A, Janknecht P, Rodriguez JJ, Nogueira R (2006) Life cycle assessment of wastewater treatment options for small and decentralized communities: energy-saving systems versus activated sludge, Proc. 10th International Conference on wetland Systems for Water Pollution Control, Lisbon; pp.1203-1213

  • Maier U, De Biase C, Baeder-Bederski O, Bayer P (2009) Calibration of hydraulic parameters for large-scale vertical flow constructed wetlands. J Hydrol 369:260–273

    Article  Google Scholar 

  • Malaviya P, Singh A (2012) Constructed wetlands for management of urban stormwater runoff. Crit Rev Environ Sci Technol 42:2153–2214

    Article  Google Scholar 

  • Mantovi P, Marmiroli M, Maestri E, Tagliavini S, Piccinini S, Marmiroli N (2003) Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresour Technol 88:85–94

    Article  Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  Google Scholar 

  • Matamoros V, Arias C, Brix H, Bayona JM (2007) Removal of pharmaceuticals and personal care products (PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and s sand filter. Environ Sci Technol 41:8171–8177

    Article  Google Scholar 

  • Melián JAH, Rodríguez AJM, Araña J, Díaz OG, Henríquez JJB (2010) Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecol Eng 36:891–899

    Article  Google Scholar 

  • Melidis P, Gikas GD, Akratos CS, Tsihrintzis VA (2010) Dewatering of primary settled urban sludge in a vertical flow wetland. Desalination 250(1):395–398. doi:10.1016/j.desal.2009.09.063

    Article  Google Scholar 

  • Memon FA, Zheng Z, Butler D, Shirley-Smith C, Lui S, Makropoulos C, Avery L (2007) Life cycle impact assessment of greywater recycling technologies for new developments. Environ Monitoring Assess 129(1–3):27–35

    Article  Google Scholar 

  • Merlin G, Pajean J-L, Lissolo T (2002) Performances of constructed wetlands for municipal wastewater treatment in rural mountainous area. Hydrobiologia 469:87–98

    Article  Google Scholar 

  • Meuleman FMA, van Logtestijn R, Rijs BJG, Verhoeven TAJ (2003) Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment. Ecol Eng 20:31–44

    Article  Google Scholar 

  • Mitsch WJ, Wise KM (1998) Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Res 32(6):1888–1900

    Article  Google Scholar 

  • Molle P, Liénard A, Boutin C, Merlin G, Iwema A (2005) How to treat raw sewage with constructed wetlands: an overview of the French systems. Water Sci Technol 51(9):11–21

    Google Scholar 

  • Molle P, Prost-Boucle S, Lienard A (2008) Potential for total nitrogen removal by combining vertical flow and horizontal flow constructed wetlands: a full-scale experimental study. Ecol Eng 34:23–29

    Article  Google Scholar 

  • Molleda P, Blanco I, Ansola G, de Luis E (2008) Removal of wastewater pathogen indicators in a constructed wetland in Leon, Spain. Ecol Eng 33:252–257

    Article  Google Scholar 

  • Morari F, Giardini L (2009) Municipal wastewater treatment with vertical flow constructed wetlands for irrigation reuse. Ecol Eng 35:643–653

    Article  Google Scholar 

  • Moreno C, Farahbakshazad N, Morrison GM (2002) Ammonia removal from oil refinery effluent in vertical upflow macrophyte column systems. Water Air and Soil Pollution 135:237–247

    Article  Google Scholar 

  • Moshiri GA (ed) (1993) Constructed wetlands for water quality improvement. Lewis Publishers-CRC Press, Boca Raton, 632p

    Google Scholar 

  • Moutsopoulos KN, Poultsidis V, Papaspyros I.N.E., Tsihrintzis VA (2011) Simulation of hydrodynamics and nitrogen transformation processes in HSF constructed wetlands and porous media using the advection-dispersion-reaction equation with linear sink-source terms. Ecol Eng, 37(9):1407–1415, doi: 10.1016/j.ecoleng.2011.03.034

  • Mulamootil G, McBean EA, Rovers F (eds) (1999) Constructed wetlands for the treatment of landfill leachates. Lewis Publishers-CRC Press, Boca Raton, 281p

    Google Scholar 

  • Müller RA (2011) Remediation of groundwater contaminated with MTBE and benzene: the potential of vertical-flow soil filter systems. Water Res 45:5063–5074

    Article  Google Scholar 

  • Mustafa A, Scholz M, Harrington R, Carroll P (2009) Long-term performance of a representative integrated constructed wetland treating farmyard runoff. Ecol Eng 35:779–790

    Article  Google Scholar 

  • Nivala J, Hoos MB, Cross C, Wallace S, Parkin G (2007) Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci Total Environ 380:19–27

    Article  Google Scholar 

  • Nuttall PM, Boon AG, Rowell MR (1997) Review of the design and management of constructed wetlands, construction industry research and information association (CIRIA), report 180, London, 267p

  • O’Hogain S (2003) The design, operation and performance of a municipal hybrid reed bed treatment system. Water Sci Technol 48(5):119–126

    Google Scholar 

  • Ong S-A, Uchiyama K, Inadama D, Yamagiwa K (2009) Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using up-flow constructed wetland. J Hazard Mater 165:696–703

    Article  Google Scholar 

  • Ong S-A, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K (2010) Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour Technol 101:7239–7244

    Article  Google Scholar 

  • Öövel M, Tooming A, Mauring T, Mander Ü (2008) Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia. Ecol Eng 29:17–26

    Article  Google Scholar 

  • Paing J, Voisin J (2004) Vertical flow constructed wetlands for municipal wastewater and septage treatment in French rural area. Proc. 9th International Conference on wetland Systems for Water Pollution Control. Avignon, France 26-30:315–322

    Google Scholar 

  • Paing J, Voisin J (2005) Vertical flow constructed wetlands for municipal wastewater and septage treatment in French rural area. Water Sci Technol 51(9):145–155

    Google Scholar 

  • Papadopoulos FH, Tsihrintzis VA (2011) Assessment of a full-scale duckweed pond system for septage treatment. Environ Technol 32(7):795–804. doi:10.1080/09593330.2010.514009

    Article  Google Scholar 

  • Papadopoulos FH, Tsihrintzis VA, Zdragas AG (2011) Removal of faecal bacteria from septage by treating it in a full-scale duckweed-covered pond system. J Environ Manag 92(12):3130–3135. doi:10.1016/j.jenvman.2011.08.008

    Article  Google Scholar 

  • Papaevangelou V, Gikas GD, Tsihrintzis VA (2016a) Effect of operational and design parameters on performance of pilot-scale horizontal subsurface flow constructed wetlands treating university campus wastewater. Environ Sci Pollut Res 23(19):19504–19519. doi:10.1007/s11356-016-7162-7

    Article  Google Scholar 

  • Papaevangelou VA, Gikas GD, Tsihrintzis VA (2016b) Effect of operational and design parameters on performance of pilot-scale vertical flow constructed wetlands treating university campus wastewater. Water Resour Manag 30(15):5875–5899. doi:10.1007/s11269-016-1484-6

    Article  Google Scholar 

  • Papaevangelou VA, Gikas GD, Tsihrintzis VA (2016c) Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: overall performance, and fate and distribution of this element within the wetland environment. Chemosphere 168:716–730. doi:10.1016/j.chemosphere.2016.11.002

    Article  Google Scholar 

  • Papaevangelou VA, Gikas GD, Tsihrintzis VA, Antonopoulou M, Konstantinou iK (2016d) Removal of endocrine disrupting chemicals in HSF and VF pilot-scale constructed wetlands. Chem Eng J 294:146–156, doi: 10.1016/j.cej.2016.02.103

  • Papaevangelou V, Gikas GD, Vryzas Z, Tsihrintzis VA (2017) Removal of a fungicide from agricultural runoff in pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 101:193–200. doi:10.1016/j.ecoleng.2017.01.045

    Article  Google Scholar 

  • Pavlineri N, Skoulikidis NT, Tsihrintzis VA (2017) Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem Eng J 308:1120–1132. doi:10.1016/j.cej.2016.09.140

    Article  Google Scholar 

  • Poach ME, Hunt PG, Reddy GB, Stone KC, Johnson MH, Grubbs A (2004) Swine wastewater treatment by marsh-pond-marsh constructed wetlands under varying nitrogen loads. Ecol Eng 23:165–175

    Article  Google Scholar 

  • Prochaska CA, Zouboulis AI (2006) Removal of phosphates by pilot-scale vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol Eng 26:293–303

    Article  Google Scholar 

  • Prochaska CA, Zouboulis AI, Eskridge KM (2007) Performance of pilot-scale vertical-flow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage. Ecol Eng 31(1):57–66

    Article  Google Scholar 

  • Prost-Boucle S, Molle P (2012) Recirculation on a single stage of vertical flow constructed wetland: treatment limits and operation modes. Ecol Eng 43:81–84

    Article  Google Scholar 

  • Puigagut J, Villaseñor J, Salas JJ, Bécares E, García J (2007) Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparative study. Ecol Eng 30(4):312–319

  • Reed S, Middlebrooks E, Crites R (1995) Natural Systems for Waste Management and Treatment. McGraw Hill, New York

    Google Scholar 

  • Reinoso R, Torres LA, Bécares E (2008) Efficiency of natural systems for removal of bacteria and pathogenic parasites from wastewater. Sci Total Environ 395:80–86

    Article  Google Scholar 

  • Ren Y-X, Zhang H, Wang C, Yang Y-Z, Qin Z, Ma Y (2011) Effects of the substrate depth on purification performance of a hybrid constructed wetland treating domestic sewage. Journal of Environmental Science and Health-Part A 46:777–782

    Article  Google Scholar 

  • Rossmann M, de Matos AT, Abreu EC, de Silva FF, Borges AC (2012) Performance of constructed wetlands in the treatment of aerated coffee processing wastewater: removal of nutrients and phenolic compounds. Ecol Eng 49:264–269

    Article  Google Scholar 

  • Rousseau DPL, Vanrolleghem PA, De Pauw N (2004) Constructed wetlands in Flanders: a performance analysis. Ecol Eng 23:151–163

    Article  Google Scholar 

  • Saeed T, Afrin R, Al Muyeed A, Sun G (2012) Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. Chemosphere 88:1065–1073

    Article  Google Scholar 

  • Sawaittayothin V, Polprasert C (2007) Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresour Technol 98:565–570

    Article  Google Scholar 

  • Scholz M (2015) Wetlands for water Pollution control, 2nd edn. Elsevier, Amsterdam, 556p

    Google Scholar 

  • Seeger EM, Kuschk P, Fazakeas H, Grathwohl P, Kästner M (2011) Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands. Environ Pollut 159:3769–3776

    Article  Google Scholar 

  • Seidel K (1966) Reinigung von Gewassern durch hohere Pflanzen. Deutsche Naturwissenschaft 12:297–298

    Google Scholar 

  • Seo DC, Hwang SH, Kim HJ, Cho JS, Lee HJ, DeLaune RD, Jugsujinda A, Lee ST, Seo JY, Heo JS (2008) Evaluation of 2- and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater. Ecol Eng 32:121–132

    Article  Google Scholar 

  • Serrano L, de la Varga D, Ruiz I (2011) Winery wastewater treatment in a hybrid constructed wetland. Ecol Eng 37(5):744–753

    Article  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanisms of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  Google Scholar 

  • Singh S, Haberl R, Moog O, Shrestha RR, Shrestha P, Shrestha R (2009) Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal-a model for DEWATS. Ecol Eng 35:654–660

    Article  Google Scholar 

  • Sklarz MY, Gross A, Yakirevich A, Soares MIM (2009) A recirculating vertical flow constructed wetland for the treatment of domestic wastewater. Desalination 246:617–624

    Article  Google Scholar 

  • Sochacki A, Surmacz-Górska J, Faure O, Guy B (2014) Polishing of synthetic electroplating wastewater in microcosm upflow constructed wetlands: effect of operating conditions. Chem Eng J 237:250–258. doi:10.1016/j.cej.2013.10.015

    Article  Google Scholar 

  • Song HL, Nakano K, Taniguchi T, Nomura M, Nishimura O (2009) Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. Bioresour Technol 100:2945–2951

    Article  Google Scholar 

  • Stefanakis AI, Tsihrintzis VA (2009a) Effect of outlet water level raising and effluent recirculation on removal efficiency of pilot-scale, horizontal subsurface flow constructed wetlands. Desalination 248:961–976

    Article  Google Scholar 

  • Stefanakis AI, Tsihrintzis VA (2009b) Performance of pilot-scale vertical flow constructed wetlands treating simulated municipal wastewater: effect of various design parameters. Desalination 248:753–770

    Article  Google Scholar 

  • Stefanakis AI, Tsihrintzis VA (2012a) Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands. Chem Eng J 181-182:416–430. doi:10.1016/j.cej.2011.11.108

    Article  Google Scholar 

  • Stefanakis AI, Tsihrintzis VA (2012b) Use of zeolite and bauxite in filter media treating the effluent of vertical flow constructed wetlands. Microporous Mesoporous Mater 155:106–116

    Article  Google Scholar 

  • Stefanakis AI, Tsihrintzis VA (2012c) Heavy metal fate in pilot-scale sludge drying reed beds under various design and operation conditions. J Hazard Mater 213-214:393–405. doi:10.1016/j.jhazmat.2012.02.016

    Article  Google Scholar 

  • Stefanakis A, Akratos CS, Melidis P, Tsihrintzis VA (2009) Surplus activated sludge dewatering in pilot-scale sludge drying reed beds. J Hazard Mater 172(2–3):1122–1130. doi:10.1016/j.jhazmat.2009.07.105

    Article  Google Scholar 

  • Stefanakis AI, Akratos CA, Tsihrintzis VA (2011) Effect of wastewater step-feeding on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 37(3):431–443

    Article  Google Scholar 

  • Stefanakis A, Akratos C, Tsihrintzis VA (2014) Vertical flow constructed wetlands: eco-engineering Systems for Wastewater and Sludge Treatment, Elsevier, 378p

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  Google Scholar 

  • Sun G, Austin D (2007) A mass balance study on nitrification and deammonification in vertical flow constructed wetlands treating landfill leachate. Water Sci Technol 56(3):117–123

    Article  Google Scholar 

  • Sun G, Gray KR, Biddlestone AJ (1999) Treatment of agricultural wastewater in a pilot-scale tidal flow reed bed system. Environ Technol 20(2):233–237

    Article  Google Scholar 

  • Sun G, Gray KR, Biddlestone AJ, Allen SJ, Cooper DJ (2003) Effect of effluent recirculation on the performance of a reed bed system treating agricultural wastewater. Process Biochem 39(3):351–357

    Article  Google Scholar 

  • Tan K, Jackson WA, Anderson TA, Pardue JH (2004) Fate of perchlorate-contaminated water in upflow wetlands. Water Res 38:4173–4185

    Article  Google Scholar 

  • Tanner CC (1996) Plants for constructed wetland treatment systems – a comparison of the growth and nutrient uptake of eight emergent species. Ecol Eng 7:59–83

    Article  Google Scholar 

  • Tanner CC (2001) Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Sci Technol 44(11):9–17

    Google Scholar 

  • Tanner CC, Clayton JS, Upsdell MP (1995) Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands - i. Removal of oxygen demand, suspended solids and faecal coliforms. Water Res 29:17–26

    Article  Google Scholar 

  • Tee HC, Seng CE, Noor AM, Lim PE (2009) Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal. Sci Total Environ 407(11):3563–3571

    Article  Google Scholar 

  • Tietz A, Hornek R, Langergraber G, Kreuzinger N, Haberl R (2007) Diversity of ammonia oxidising bacteria in a vertical flow constructed wetland. Water Sci Technol 56(3):241–247

    Article  Google Scholar 

  • Trias M, Hu Z, Mortula MM, Gordon RJ, Gagnon GA (2004) Impact of seasonal variation on treatment of swine wastewater. Environ Technol 25:775–781

    Article  Google Scholar 

  • Tsihrintzis VA, Gikas GD (2010) Constructed wetlands for wastewater and activated sludge treatment in north greece: a review. Water Sci Technol 61(10):2653–2672. doi:10.2166/wst.2010.188

    Article  Google Scholar 

  • Tsihrintzis VA, Hamid R (1997) Modeling and management of urban stormwater runoff quality: a review. Water Resour Manag 11(2):137–164

    Article  Google Scholar 

  • Tsihrintzis VA, Vasarhelyi GM, Lipa J (1995) Multiobjective approaches in freshwater wetland restoration and design. Water Int 20(2):98–105

    Article  Google Scholar 

  • Tsihrintzis VA, Akratos CS, Gikas GD, Karamouzis D, Angelakis AN (2007) Performance and cost comparison of a FWS and a VSF constructed wetland systems. Environ Technol 28(6):621–628

    Article  Google Scholar 

  • Tuszynska A, Obarska-Pempkowiak H (2008) Dependence between quality and removal effectiveness of organic matter in hybrid constructed wetlands. Bioresour Technol 99:6010–6016

    Article  Google Scholar 

  • Uggetti E, Ferrer I, Molist J, García J (2011) Technical, economic and environmental assessment of sludge treatment wetlands. Water Res 45:573–582

    Article  Google Scholar 

  • Uggetti E, Ferrer I, Arias C, Brix H, Garcia J (2012a) Carbon footprint of sludge treatment reed beds. Ecol Eng 44:298–302

    Article  Google Scholar 

  • Uggetti E, Ferrer I, Carretero J, García J (2012b) Performance of sludge treatment wetlands using different plant species and porous media. J Hazard Mater 217-218:263–270

    Article  Google Scholar 

  • United Nations (2003) Wastewater Treatment Technologies: A General Review. New York, USA, E/ESCWA/SDPD/2003/6, 21 September, 121p

  • USEPA (2002) Onsite wastewater treatment systems manual. EPA/625/R-00/008, U.S. Environmental Protection Agency: Office of Water, Washington, D.C

  • Vera L, Martel G, Márquez M (2013) Two years monitoring of the natural system for wastewater reclamation in Santa Lucía, Gran Canaria Island Ecol Eng 50:21–30

  • Vymazal J (2001) Transformations of nutrients in natural and constructed wetlands. Backhuys Publishers, Leiden

    Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65

    Article  Google Scholar 

  • Vymazal J (2008) Wastewater treatment, plant dynamics and Management in Constructed and Natural. Springer, Wetlands

    Book  Google Scholar 

  • Vymazal J (2013) The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res 47(14):4795–4811. doi:10.1016/j.watres.2013.05.029

    Article  Google Scholar 

  • Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, environmental Pollution 14, Springer, The Netherlands

  • Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (1998) Constructed wetlands for wastewater treatment in Europe. Backhuys Publishers, Leiden

    Google Scholar 

  • Vymazal J, Greenway M, Tonderski K, Brix H, Mander Ü (2006) Constructed wetlands for wastewater treatment. In: Wetlands and Natural Resource Management. Ecological Studies. Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (Eds), Springer-Verlag, Berlin, Germany, Vol. 190, pp. 69-94.

  • Walker DJ, Hurl S (2002) The reduction of heavy metals in a storm water wetland. Ecol Eng 18(4):407–414

    Article  Google Scholar 

  • Wang R, Baldy V, Périssol C, Korboulewsky N (2012) Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations. J Environ Manag 95:S158–S164

    Article  Google Scholar 

  • Wang Z, Dong J, Liu L, Zhu G, Liu C (2013) Screening of phosphate-removing substrates for use in constructed wetlands treating swine wastewater. Ecol Eng 54:57–65

    Article  Google Scholar 

  • Water Environment Federation (WEF) (2001) Natural Systems for Wastewater Treatment, manual of practice FD-16Alexandria, VA, 326p

  • Winter K-J, Goetz D (2003) The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands. Water Sci Technol 48(5):9–14

    Google Scholar 

  • Wu S, Zhang D, Austin D, Dong R, Pang C (2011) Evaluation of a lab-scale tidal flow constructed wetland performance: oxygen transfer capacity, organic matter and ammonium removal. Ecol Eng 37:1789–1795

    Article  Google Scholar 

  • Xiao E-R, Wei L, He F, Cheng S-P, Wu Z-B (2010) Performance of the combined SMBR–IVCW system for wastewater treatment. Desalination 250:781–786

    Article  Google Scholar 

  • Xie X-L, He F, Xu D, Dong J-K, Cheng S-P, Wu Z-B (2012) Application of large-scale integrated vertical-flow constructed wetland in Beijing Olympic forest park: design, operation and performance. Water and Environment Journal 26:100–107

    Article  Google Scholar 

  • Yalcuk A (2011) Removal of phenol from olive mill wastewater in constructed wetlands using different bedding media. Ekoloji 20(80):1–5

    Google Scholar 

  • Yalcuk A, Pakdil NB, Turan SY (2010) Performance evaluation on the treatment of olive mill waste water in vertical subsurface flow constructed wetlands. Desalination 262:209–214

    Article  Google Scholar 

  • Yang L, Hu CC (2005) Treatments of oil-refinery and steel-mill wastewaters by mesocosm constructed wetland systems. Water Sci Technol 51(9):157–164

    Google Scholar 

  • Yang Q, Chen Z-H, Zhao J-G, Gu B-H (2007) Contaminant removal of domestic wastewater by constructed wetlands: effects of plant species. J Integr Plant Biol 49(4):437–446

    Article  Google Scholar 

  • Ye F, Li Y (2009) Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecol Eng 35:1043–1050

    Article  Google Scholar 

  • Yeh TY, Chou CC, Pan CT (2009) Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination 249:368–373

    Article  Google Scholar 

  • Zapater M, Gross A, Soares MIM (2011) Capacity of an on-site recirculating vertical flow constructed wetland to withstand disturbances and highly variable influent quality. Ecol Eng 37(10):1572–1577

    Article  Google Scholar 

  • Zazo JA, Paul JS, Jaffe PR (2008) Influence of plants on the reduction of hexavalent chromium in wetland sediments. Environ Pollut 156:29–35

    Article  Google Scholar 

  • Zhang SY, Zhou QH, Xu D, He F, Cheng SP, Liang W, Du C, Wu ZB (2010) Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: effects on water quality and zooplankton. Pol J Environ Stud 19(5):1063–1070

    Google Scholar 

  • Zhang Y, Zhang Y, Huang M, Xu H, He Y (2012a) Pollutants removal and analysis of microbial community of malodorous river in BFG-IVCWs. Adv Mater Res 518-523:3045–3052

    Article  Google Scholar 

  • Zhang DQ, Gersberg RM, Zhu J, Hua T, Jinadasa KBSN, Tan SK (2012b) Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland. Environ Pollut 167:124–131

    Article  Google Scholar 

  • Zhao QY, Sun G, Lafferty C, Allen SJ (2004a) Optimising the performance of a lab-scale tidal flow reed bed system treating agricultural wastewater. Water Sci Technol 50(8):65–72

    Google Scholar 

  • Zhao QY, Sun G, Allen JS (2004b) Purification capacity of a highly loaded laboratory scale tidal flow reed bed system with effluent recirculation. Sci Total Environ 330:1–8

    Article  Google Scholar 

  • Zhao YQ, Sun G, Allen SJ (2005) Anti-sized reed bed system for animal wastewater treatment: a comparative study. Water Res 38(12):2907–2917

    Article  Google Scholar 

  • Zhao L, Zhu W, Tong W (2009) Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands. J Environ Sci 21:750–757

    Article  Google Scholar 

  • Zhao YJ, Hui Z, Chao X, Nie E, Li HJ, He J, Zheng Z (2011) Efficiency of two-stage combinations of subsurface vertical downflow and upflow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol Eng 37:1546–1554

    Article  Google Scholar 

  • Zhi W, Yuan L, Ji GD, He CG (2015) Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands, Environ. Sci. Technol. 49:4575−4583, doi:10.1021/acs.est.5b00017

  • Zhou Y, Tigane T, Li X, Truu M, Truu J, Mander Ü (2013) Hexachlorobenzene dechlorination in constructed wetland mesocosms. Water Res 47(1):102–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios A. Tsihrintzis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsihrintzis, V.A. The use of Vertical Flow Constructed Wetlands in Wastewater Treatment. Water Resour Manage 31, 3245–3270 (2017). https://doi.org/10.1007/s11269-017-1710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1710-x

Keywords

Navigation