Skip to main content
Log in

Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Positive feedbacks influenced by direct and indirect interactions between fire, vegetation, and microclimate can allow pyrophilic and pyrophobic ecosystems to co-occur in the same landscape, resulting in the juxtaposition of flammable and non-flammable vegetation. To quantify the drivers of these feedbacks, we combined measurements of vegetation, fuels, and microclimate with observations of fire spread along ecotonal gradients. We established 113 permanent transects (consisting of 532 plots), each traversing an ecotone between savanna and wetland in the Sandhills of North Carolina, USA. In each plot, we recorded cover of ten plant functional types. We collected surface fuels at a subset of our transects. We continuously monitored microclimate (nine meteorological variables) across 21 representative ecotones. Following prescribed fire, we measured fire spread along each transect. Vegetation structure and microclimate significantly predicted fire spread along the savanna-wetland ecotone. Fire spread was most influenced by vegetation structure, specifically C4 grass cover, which accounted for 67 % of the variance explained by our model. We have identified the components of the fire, vegetation, and microclimate feedback that control where fires stop under current conditions, but their control should not be considered absolute. For example, when ignited in savanna, prescribed burns continued through wetland vegetation 43 % of the time. The feedback operating within these systems may be relatively weak as compared to other savanna systems. Environmental changes may alter fire spread extent, and with it ecosystem boundaries, or even ecosystem states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abades SRS, Gaxiola A, Marquet PA (2014) Fire, percolation thresholds and the savanna forest transition: a neutral model approach. J Ecol 102:1386–1393. doi:10.1111/1365-2745.12321

    Article  Google Scholar 

  • Aschenbach TA, Foster BL, Imm DW (2010) The initial phase of a longleaf pine-wiregrass savanna restoration: species establishment and community responses. Restor Ecol 18:762–771. doi:10.1111/j.1526-100X.2009.00541.x

    Article  Google Scholar 

  • Atkinson D, Chladil M, Janssen V, Lucieer A (2010) Implementation of quantitative bushfire risk analysis in a GIS environment. Int J Wildl Fire 19:649–658. doi:10.1071/WF08185

    Article  Google Scholar 

  • Baeza MJ, Raventós J, Escarré A, Vallejo VR (2006) Fire risk and vegetation structural dynamics in Mediterranean shrubland. Plant Ecol 187:189–201. doi:10.1007/s11258-005-3448-4

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. doi:10.18637/jss.v067.i01

    Google Scholar 

  • Beckage B, Platt WJ, Gross LJ (2009) Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. Am Nat 174:805–818. doi:10.1086/648458

    Article  PubMed  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394. doi:10.1016/j.tree.2005.04.025

    Article  PubMed  Google Scholar 

  • Bonham C (2013) Measurements for terrestrial vegetation, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Bova AS, Dickinson MB (2008) Beyond “fire temperatures”: calibrating thermocouple probes and modeling their response to surface fires in hardwood fuels. Can J For Res 38:1008–1020. doi:10.1139/X07-204

    Article  Google Scholar 

  • Brewer JS, Cunningham AL, Moore TP, Brooks RM, Waldrup JL (2009) A six-year study of fire-related flowering cues and coexistence of two perennial grasses in a wet longleaf pine (Pinus palustris) savanna. Plant Ecol 200:141–154. doi:10.1007/s11258-008-9440-z

    Article  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag New York Inc, New York

    Google Scholar 

  • Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:1–29. doi:10.18637/jss.v034.i12

    Article  Google Scholar 

  • Cheney NP, Gould JS, Catchpole WR (1993) The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int J Wildl Fire 3:31–44. doi:10.1071/WF9930031

    Article  Google Scholar 

  • Christensen NL (2000) Vegetation of the southeastern coastal plain. In: Barbour M, Billings W (eds) North American terrestrial vegetation, 2nd edn. Camrbridge University Press, New York, pp 397–448

    Google Scholar 

  • Cruz MG, Alexander ME (2013) Uncertainty associated with model predictions of surface and crown fire rates of spread. Environ Model Softw 47:16–28. doi:10.1016/j.envsoft.2013.04.004

    Article  Google Scholar 

  • Dantas V, Batalha M, Pausas J (2013) Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454–2463. doi:10.1890/12-1629.1

    Article  Google Scholar 

  • Drewa PB, Thaxton JM, Platt WJ (2006) Responses of root-crown bearing shrubs to differences in fire regimes in Pinus palustris (longleaf pine) savannas: exploring old-growth questions in second-growth systems. Appl Veg Sci 9:27. doi:10.1111/j.1654-109X.2006.tb00653.x

    Article  Google Scholar 

  • Dwire KA, Kauffman JB (2003) Fire and riparian ecosystems in landscapes of the western USA. For Ecol Manag 178:61–74. doi:10.1016/S0378-1127(03)00053-7

    Article  Google Scholar 

  • Favier C, Chave J, Fabing A, Schwartz D, Dubois MA (2004) Modelling forest–savanna mosaic dynamics in man-influenced environments: effects of fire, climate and soil heterogeneity. Ecol Model 171:85–102. doi:10.1016/j.ecolmodel.2003.07.003

    Article  Google Scholar 

  • Fill JM, Platt WJ, Welch SM, Waldron JL, Mousseau TA (2015) Updating models for restoration and management of fiery ecosystems. For Ecol Manag 356:54–63. doi:10.1016/j.foreco.2015.07.021

    Article  Google Scholar 

  • Fonda RW (2001) Burning characteristics of needles from eight pine species. For Sci 47:390–396

    Google Scholar 

  • Frost C (1998) Presettlement fire frequency regimes of the United States: a first approximation. In: Pruden T, Brennan L (eds) Fire in ecosystem management: shifting the paradigm from suppression to prescription. Tall Timbers Research Station, Tallahassee, pp 70–81

    Google Scholar 

  • Gagnon PR, Platt WJ (2008) Multiple disturbances accelerate clonal growth in a potentially monodominant bamboo. Ecology 89:612–618. doi:10.1890/07-1255.1

    Article  PubMed  Google Scholar 

  • Gerdes G (2011) Modeling the effects of prescribed burning on ozone precursors at Fort Bragg, NC. US Army Corp of Engineers, PWTB 200-1-82, Washington, DC

  • Gilliam F, Platt W (1999) Effects of long-term fire exclusion on tree species composition and stand structure in an old-growth Pinus palustris (longleaf pine) forest. Plant Ecol 1920:15–26. doi:10.1023/A:1009776020438

    Article  Google Scholar 

  • Grigulis K, Lavorel S, Davies ID, Dossantos A, Lloret F, Vilà M (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Glob Change Biol 11:1042–1053. doi:10.1111/j.1365-2486.2005.00980.x

    Article  Google Scholar 

  • Harrell FE Jr (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer-Verlag New York Inc, New York

    Book  Google Scholar 

  • Hoffmann WA, Schroeder W, Jackson RB (2002) Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna. Geophys Res Lett 29:2052. doi:10.1029/2002GL015424

    Article  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC (2012a) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768. doi:10.1111/j.1461-0248.2012.01789.x

    Article  PubMed  Google Scholar 

  • Hoffmann WA, Jaconis SY, McKinley KL, Geiger EL, Gotsch SG, Franco AC (2012b) Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna–forest boundaries. Austral Ecol 37:634–643. doi:10.1111/j.1442-9993.2011.02324.x

    Article  Google Scholar 

  • Hurvich CM, Tsai C (1993) A corrected Akaike information criterion for vector autoregressive model selection. J Time Ser Anal 14:271–279. doi:10.1111/j.1467-9892.1993.tb00144.x

    Article  Google Scholar 

  • Iverson LR, Yaussy DA, Rebbeck J, Hutchinson TF, Long RP, Prasad AM (2004) A comparison of thermocouples and temperature paints to monitor spatial and temporal characteristics of landscape scale prescribed fires. Int J Wildl Fire 13:311–322. doi:10.1071/WF03063

    Article  Google Scholar 

  • Johnson PCD (2014) Extension of Nakagawa & Schielzeth’s R 2GLMM to random slopes models. Methods Ecol Evol 5:944–946. doi:10.1111/2041-210X.12225

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaeser M, Kirkman L (2009) Estimating total plant species richness in depressional wetlands in the longleaf pine ecosystem. Wetlands 29:866–874. doi:10.1672/08-179.1

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff P, Christensen R (2012) lmerTest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0. http://CRAN.R-project.org/package=lmerTest

  • Landers JL, Van Lear DH, Boyer WD (1995) The longleaf pine forests of the Southeast: requiem or renaissance? J For 93:39–44

    Google Scholar 

  • Lashley MA, Chitwood MC, Prince A, Elfelt MB, Kilburg EL, Deperno CS, Moorman CE (2014) Subtle effects of a managed fire regime: a case study in the longleaf pine ecosystem. Ecol Indic 38:212–217. doi:10.1016/j.ecolind.2013.11.006

    Article  Google Scholar 

  • Lawrence MG (2005) The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Am Meteorol Soc 86:225–233. doi:10.1175/BAMS-86-2-225

    Article  Google Scholar 

  • Lemmon PE (1956) A spherical densiometer for estimating forest overstory density. For Sci 2:314–320

    Google Scholar 

  • Martens SN, Breshears DD, Meyer CW (2000) Spatial distributions of understory light along the grassland/forest continuum: effects of cover, height, and spatial pattern of tree canopies. Ecol Model 126:79–93. doi:10.1016/S0304-3800(99)00188-X

    Article  Google Scholar 

  • Martin K, Kirkman L (2009) Management of ecological thresholds to re-establish disturbance-maintained herbaceous wetlands of the south-eastern USA. J Appl Ecol 46:906–914. doi:10.1111/j.1365-2664.2009.01659.x

    Article  Google Scholar 

  • Morvan D (2011) Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling. Fire Technol 47:437–460. doi:10.1007/s10694-010-0160-2

    Article  Google Scholar 

  • Murphy BP, Bowman DMJS (2012) What controls the distribution of tropical forest and savanna? Ecol Lett 15:748–758. doi:10.1111/j.1461-0248.2012.01771.x

    Article  PubMed  Google Scholar 

  • Murphy BP, Bradstock RA, Boer MM, Carter J, Cary GJ, Cochrane MA, Fensham RJ, Russell-Smith J, Williamson GJ, Bowman DMJS (2013) Fire regimes of Australia: a pyrogeographic model system. J Biogeogr 40:1048–1058. doi:10.1111/jbi.12065

    Article  Google Scholar 

  • Mutch R (1970) Wildland fires and ecosystems—a hypothesis. Ecology 51:1046–1051. doi:10.2307/1933631

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Nelson R Jr (2000) Prediction of diurnal change in 10-h fuel stick moisture content. Can J For Res 30:1071–1087. doi:10.1139/x00-032

    Article  Google Scholar 

  • Noss RF, Platt WJ, Sorrie BA, Weakley AS, Means DB, Costanza J, Peet RK (2015) How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Divers Distrib 21:236–244. doi:10.1111/ddi.12278

    Article  Google Scholar 

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690. doi:10.1007/s11135-006-9018-6

    Article  Google Scholar 

  • Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN (2014) Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol Evol 29:205–213. doi:10.1016/j.tree.2014.02.004

    Article  PubMed  Google Scholar 

  • Platt W (1999) Southeastern pine savannas. In: Anderson R, Fralish J, Baskin J (eds) Savanna, barrens and rock outcrop plant communities of North America. Cambridge University Press, New York, pp 23–51

    Chapter  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rebertus A, Williamson G, Moser E (1989) Longleaf pine pyrogenicity and turkey oak mortality in Florida xeric sandhills. Ecology 70:60–70. doi:10.2307/1938412

    Article  Google Scholar 

  • Rothermel RCR (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, INT-115, Ogden, UT

  • Rothermel RC (1983) How to predict the spread and intensity of forest and range fires. USDA Forest Service, Intermountain Forest and Range Experiment Station, INT-143, Ogden, UT

  • Russo L, Russo P, Vakalis D, Siettos C (2014) Detecting weak points of wildland fire spread: a cellular automata model risk assessment simulation approach. Chem Eng Trans 36:253–258. doi:10.3303/CET1436043

    Google Scholar 

  • Ryan KC, Knapp EE, Varner JM (2013) Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Front Ecol Environ 11:e15–e24. doi:10.1890/120329

    Article  Google Scholar 

  • Schafale M (2012) Guide to the natural communities of North Carolina: fourth approximation. Department of Environment, Health, and Natural Resources, North Carolina Natural Heritage Program, Division of Parks and Recreation, Raleigh

    Google Scholar 

  • Schafer JL, Just MG (2014) Size dependency of post-disturbance recovery of multi-stemmed resprouting trees. PLoS One 9:e105600. doi:10.1371/journal.pone.0105600

    Article  PubMed  PubMed Central  Google Scholar 

  • Schafer JL, Breslow BP, Just MG, Hohmann MG, Hollingsworth SN, Swatling-Holcomb SL, Hoffmann WA (2013) Current and historical variation in wiregrass (Aristida stricta) abundance and distribution is not detectable from soil δ13C measurements in longleaf pine (Pinus palustris) savannas. Castanea 78:28–36. doi:10.2179/12-021

    Article  Google Scholar 

  • Schertzer E, Staver AC, Levin S (2014) Implications of the spatial dynamics of fire spread for the bistability of savanna and forest. J Math Biol. doi:10.1007/s00285-014-0757-z

    PubMed  Google Scholar 

  • Schwilk DW (2003) Flammability is a niche construction trait: canopy architecture affects fire intensity. Am Nat 162:725–733. doi:10.1086/379351

    Article  PubMed  Google Scholar 

  • Silva LCR, Hoffmann WA, Rossatto DR, Haridasan M, Franco AC, Horwath W (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842. doi:10.1007/s11104-013-1822-x

    Article  CAS  Google Scholar 

  • Simeoni A, Salinesi P, Morandini F (2011) Physical modelling of forest fire spreading through heterogeneous fuel beds. Int J Wildl Fire 20:625–632. doi:10.1071/WF09006

    Article  Google Scholar 

  • Smit IPJ, Asner GP, Govender N, Kennedy-Bowdoin T, Knapp DE, Jacobson J (2010) Effects of fire on woody vegetation structure in African savanna. Ecol Appl 20:1865–1875. doi:10.1890/09-0929.1

    Article  PubMed  Google Scholar 

  • Sorrie BA, Gray JB, Crutchfield PJ (2006) The vascular flora of the longleaf pine ecosystem of Fort Bragg and Weymouth Woods, North Carolina. Castanea 71:129–161. doi:10.2179/05-02.1

    Article  Google Scholar 

  • Stambaugh MC, Guyette RP, Marschall JM (2011) Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of a frequent fire regime. J Veg Sci 22:1094–1104. doi:10.1111/j.1654-1103.2011.01322.x

    Article  Google Scholar 

  • Tonidandel S, LeBreton JM (2011) Relative importance analysis: a useful supplement to regression analysis. J Bus Psychol 26:1–9. doi:10.1007/s10869-010-9204-3

    Article  Google Scholar 

  • Trauernicht C, Murphy BP, Portner TE, Bowman DMJS (2012) Tree cover-fire interactions promote the persistence of a fire-sensitive conifer in a highly flammable savanna. J Ecol 100:958–968. doi:10.1111/j.1365-2745.2012.01970.x

    Article  Google Scholar 

  • Varner JM, Kane JM, Kreye JK, Engber E (2015) The flammability of forest and woodland litter: a synthesis. Curr For Rep 1:91–99. doi:10.1007/s40725-015-0012-x

    Google Scholar 

  • Weakley AS, Schafale MP (1991) Classification of pocosins of the Carolina Coastal Plain. Wetlands 11:355–375. doi:10.1007/BF03160756

    Article  Google Scholar 

  • Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant communities. In: Begon M, Fitter A (eds) Advances in ecological research. Academic Press, London, pp 263–336

    Google Scholar 

Download references

Acknowledgments

We thank A. Ballard, S. Bell, B. Breslow, K. Fraboni, S. Goyette, R. Sanders, M. Walz, and A. Whitehead for research assistance. We also thank the Fort Bragg Endangered Species and Forestry branches for logistic support. This research was supported by a cooperative agreement between the US Army Engineer Research and Development Center and North Carolina State University (W9132T-11-2-0007 to W.A.H.). M.G.J. received support from a Southeast Climate Science Center fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Just.

Additional information

Communicated by Prof. Michael Lawes, Prof. Ross Bradstock, and Prof. David Keith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Just, M.G., Hohmann, M.G. & Hoffmann, W.A. Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecol 217, 631–644 (2016). https://doi.org/10.1007/s11258-015-0545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0545-x

Keywords

Navigation