Skip to main content

Advertisement

Log in

The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objective

A relatively wide range of trace elements are known to play important roles in biological processes, including the oxidative processes. Oxidative processes are one of the mechanisms involved in both incidence and recurrence of bladder cancer. In the present study, the concentration of iron (Fe), copper (Cu) and zinc (Zn) were determined in the serum of patients with bladder cancer in comparison to healthy subjects.

Materials and methods

This cross-sectional study was conducted on 51 patients with bladder cancer and 58 healthy volunteers after age, sex, and smoking habits were matched. After overnight fasting, samples were collected. The concentrations of Fe, Cu, and Zn were measured by flame atomic absorption spectroscopy and comparisons were made using Student's t-test.

Results

There was a significant increase in mean Cu and Cu/Zn serum level in bladder cancer patients compared to the control group (P < 0.001). In contrast, the serum zinc level in patients having bladder cancer was significantly lower than in the control group (P < 0.05). Moreover, the serum iron level was significantly lower in the patients than the control group (P < 0.001).

Conclusions

In the present study, a relationship was seen between the level of trace elements and the occurrence of bladder cancer, suggesting that an increase in the serum level of Cu and a decrease in the levels of Zn and Fe might be important causes of bladder cancer occurrence; however, defining such a cause-and-effect relationship needs several prospective studies to be done, which seems necessary with regard to the high prevalence of this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shah JB, McKiernan JM (2004) Novel therapeutics in the treatment of bladder cancer. Curr Opin Urol 14(5):287–293. doi:10.1097/00042307-200409000-00007

    Article  PubMed  Google Scholar 

  2. Akcay T, Saygili I, Andican G, Yalcin V (2003) Increased formation of 8-hydroxy-2′-deoxyguanosine in peripheral blood leukocytes in bladder cancer. Int Urol 71(3):271–274. doi:10.1159/000072677

    Article  CAS  Google Scholar 

  3. Knight JA (1998) Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 28(6):331–346

    CAS  PubMed  Google Scholar 

  4. Toyokuni S (1999) Reactive oxygen species-induced molecular damage and its application in pathology. Int Pathol 49(2):91–102. doi:10.1046/j.1440-1827.1999.00829.x

    Article  CAS  PubMed  Google Scholar 

  5. Hoekstra WG, Suttie JW, Ganther HG, Mentz W (1974) Trace elements metabolism in animals, vol 2. University Park Press, Baltimore, p 61

    Google Scholar 

  6. Willett WC, MacMahon B (1984) Diet and cancer—an overview. N Engl J Med 310(11):697–703

    Article  CAS  PubMed  Google Scholar 

  7. Nelson RL (1992) Dietary iron and colorectal cancer risk. Free Radic Biol Med 12(2):161–168. doi:10.1016/0891-5849(92)90010-E

    Article  CAS  PubMed  Google Scholar 

  8. Salganik RI, Solovyova NA, Dikalov SI, Grishaeva ON, Semenova LA, Popovsky AV (1994) Inherited enhancement of hydroxyl radical generation and lipid peroxidation in the S strain rats results in DNA rearrangements, degenerative diseases, and premature aging. Biochem Biophys Res Commun 199(2):726–733. doi:10.1006/bbrc.1994.1289

    Article  CAS  PubMed  Google Scholar 

  9. Yelinova V, Glazachev Y, Khramtsov V, Kudryashova L, Rykova V, Salganik R (1996) Studies of human and rat blood under oxidative stress: changes in plasma thiol level, antioxidant enzyme activity, protein carbonyl content, and fluidity of erythrocyte membrane. Biochem Biophys Res Commun 221(2):300–303. doi:10.1006/bbrc.1996.0590

    Article  CAS  PubMed  Google Scholar 

  10. Trush MA, Kensler TW (1991) An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radic Biol Med 10(3–4):201–209. doi:10.1016/0891-5849(91)90077-G

    Article  CAS  PubMed  Google Scholar 

  11. Spartz L, Bloom AD (1992) Biological consequences of oxidative stress: implications for cardiovascular disease and carcinogenesis. Oxford University Press, New York, pp 138–161

    Google Scholar 

  12. Li Y, Xue Q, Chen L, Chen H, Chai C, Shi B et al (2004) Research on relationships of gastric cancer with serum trace elements, Helicobacter pylori and COX-2 in gastric tissue. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 21(1):107–110

    CAS  PubMed  Google Scholar 

  13. Kumar SV, Kumar AT, Sureshwer SP, Chandra PM, Ravindra NM (2003) Micronutrients, antioxidants, and carcinoma of the gallbladder. J Surg Oncol 84(1):31–35. doi:10.1002/jso.10283

    Article  CAS  Google Scholar 

  14. Hsien WK, Su FC, Chin CW, Dar RC, Jau HL (2002) Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res 89(1):1–11. doi:10.1385/BTER:89:1:1

    Article  Google Scholar 

  15. Tsunehiro O, Toshihiro K, Koji M et al (2003) A case-case study comparing the usefulness of serum trace elements (Cu, Zn and Se) and tumor markers (CEA, SCC and SLX) in non-small cell lung cancer patients. Anticancer Res 23(1B):605–661

    Google Scholar 

  16. Dayani PN, Bishop MC, Black K, Zeltzer PM (2004) Desferoxamine(DFO)-mediated iron chelation: rationale for a novel approach to therapy for brain cancer. J Neurooncol 67(3):367–377. doi:10.1023/B:NEON.0000024238.21349.37

    Article  PubMed  Google Scholar 

  17. Olinski R, Gackowski D, Rozalski R, Foksinski M, Bialkowski K (2003) Oxidative DNA damage in cancer patients: a cause or a consequence of the disease development? Mutat Res 531(1–2):177–190. doi:10.1016/j.mrfmmm.2003.07.005

    CAS  PubMed  Google Scholar 

  18. Boldt DH (1999) New perspectives on iron: an introduction. Am J Med Sci 318(4):207–212. doi:10.1097/00000441-199910000-00001

    Article  CAS  PubMed  Google Scholar 

  19. Stoller ML, Carroll PR (2006) Urology. In: Tierney LM Jr, Mcphee SJ, Papadakis MA (eds) Current medical diagnosis and treatment, 45th edn. McGraw-Hill, New York, pp 931–973

    Google Scholar 

  20. Huang YL, Sheu JY, Lin TH (1999) Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 32(2):131–136. doi:10.1016/S0009-9120(98)00096-4

    Article  CAS  PubMed  Google Scholar 

  21. Hronek M, Zadak Z, Solichova D, Jandik P, Melichar B (2000) The association between specific nutritional antioxidants and manifestation of colorectal cancer. Nutrition 16(3):189–191. doi:10.1016/S0899-9007(99)00285-3

    Article  CAS  PubMed  Google Scholar 

  22. McMillan DC, Sattar N, Talwar D, O’Reilly DS, McArdle CS (2000) Changes in micronutrient concentrations following anti-inflammatory treatment in patients with gastrointestinal cancer. Nutrition 16(6):425–428. doi:10.1016/S0899-9007(00)00270-7

    Article  CAS  PubMed  Google Scholar 

  23. Mross K (2000) Anti-angiogenesis therapy: concepts and importance of dosing schedules in clinical trials. Drug Resist Updat 3(4):223–235. doi:10.1054/drup.2000.0150

    Article  CAS  PubMed  Google Scholar 

  24. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. doi:10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  25. Yilmaz IA, Akcay T, Cakatay U, Telci A, Ataus S, Yalcin V (2003) Relation between bladder cancer and protein oxidation. Int Urol Nephrol 35(3):345–350. doi:10.1023/B:UROL.0000022920.93994.ba

    Article  PubMed  Google Scholar 

  26. Wu T, Sempos CT, Freudenheim JL, Muti P, Smit E (2004) Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14(3):195–201. doi:10.1016/S1047-2797(03)00119-4

    Article  PubMed  Google Scholar 

  27. Marcó PLM, Jiménez E, Hernández CEA, Rojas A, Greaves ED (2001) Determination of Zn/Cu ratio and oligoelements in serum samples by total reflection X-ray fluorescence spectrometry for cancer diagnosis. Spectrochim Acta, B At Spectrosc 56(11):2195–2201. doi:10.1016/S0584-8547(01)00289-0

    Article  Google Scholar 

  28. Zhai H, Chen X, Hu Z (2003) Study on the relationship between intake of trace elements and breast cancer mortality with chemometric methods. Comput Biol Chem 27(6):581–586. doi:10.1016/S1476-9271(03)00049-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors have no financial affiliation (e.g., employment, direct payment, stock holdings, retainers, consultantships, patent licensing arrangements, or honoraria), or involvement with any commercial organization with direct financial interest in the subject or materials discussed in this manuscript. The authors would like to thank the personnel of Isfahan University of Medical Sciences for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shafieian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazdak, H., Yazdekhasti, F., Movahedian, A. et al. The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group. Int Urol Nephrol 42, 89–93 (2010). https://doi.org/10.1007/s11255-009-9583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-009-9583-4

Keywords

Navigation