Skip to main content
Log in

Getting closure: The role of urban forest canopy density in moderating summer surface temperatures in a large city

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

With a growing number of people living in urban areas, city residents are more frequently exposed to stresses related to the built environment including elevated summer surface temperatures contributing to the urban heat island (UHI) effect. This study examines the role of urban tree density in moderating surface temperature variation in a densely populated city (Toronto, Canada). By applying parallel aspatial (OLS) and spatial regression (GWR) approaches with satellite derived data describing tree canopy density and surface temperature, one dimension of tree canopy quality (i.e., canopy density) is shown to contribute directly to a reduction in the surface urban heat island (SUHI) effect at a local scale. Though the model fit differed between the two regression approaches, both exhibited moderately strong explanatory power and demonstrated that observed surface temperature decreases in locations with increasing high-density and closed tree canopy. Study findings provide an empirical basis to recommend that municipal urban forest strategies embrace canopy quality metrics, such as increasing the density of existing urban forest stands, as a part of tree planting objectives seeking to effectively deliver temperature moderation as a valuable ecosystem service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbari H (2002) Shade trees reduce building energy use and CO2 emissions from power plants. Environ Pollut 116:S119–S126. doi:10.1016/S0269-7491(01)00264-0

    Article  CAS  PubMed  Google Scholar 

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70:295–310. doi:10.1016/S0038-092X(00)00089-X

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. doi:10.1002/joc.859

    Article  Google Scholar 

  • Beckett KP, Freer-Smith PH, Taylor G (1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environ Pollut 99:347–360. doi:10.1016/S0269-7491(98)00016-5

  • Beckett KP, Freer-Smith PH, Taylor G (2000) Particulate pollution capture by urban trees: effect of species and windspeed. Glob Chang Biol 6:995–1003. doi:10.1046/j.1365-2486.2000.00376.x

    Article  Google Scholar 

  • Bloomer BJ, Vinnikov KY, Dickerson RR (2010) Changes in seasonal and diurnal cycles of ozone and temperature in the eastern U.S. Atmos Environ 44:2543–2551. doi:10.1016/j.atmosenv.2010.04.031

    Article  CAS  Google Scholar 

  • Bosselmann P, Arens E, Dunker K, Wright R (1995) Urban form and climate: case study, Toronto. J Am Plan Assoc 61:226–239. doi:10.1080/01944369508975635

    Article  Google Scholar 

  • Botkin DB, Beveridge CE (1997) Cities as environments. Urban Ecosyst 1:3–19. doi:10.1023/A:1014354923367

    Article  Google Scholar 

  • Campbell JB, Wynne RH (2011) Introduction to remote sensing. Guilford Press, New York, NY

    Google Scholar 

  • Changnon SA, Jones D (1972) Review of the influences of the Great Lakes on weather. Water Resour Res 8:360–371

    Article  Google Scholar 

  • Chow WTL, Brazel AJ (2012) Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build Environ 47:170–181. doi:10.1016/j.buildenv.2011.07.027

    Article  Google Scholar 

  • City of Toronto Parks Forestry and Recreation, Urban Forestry (2013) Every tree counts: a portrait of Toronto’s urban forest. City of Toronto, Toronto, ON http://www1.toronto.ca/City%20Of%20Toronto/Parks%20Forestry%20&%20Recreation/Urban%20Forestry/Files/pdf/E/every_tree_counts.pdf . Accessed 12 February 2014

    Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. New Engl J Med 329:1753–1759. doi:10.1056/NEJM199312093292401

    Article  CAS  PubMed  Google Scholar 

  • Donovan GH, Butry DT (2009) The value of shade: estimating the effect of urban trees on summertime electricity use. Energ. Buildings 41:662–668. doi:10.1016/j.enbuild.2009.01.002

    Article  Google Scholar 

  • Escobedo FJ, Nowak DJ (2009) Spatial heterogeneity and air pollution removal by an urban forest. Landsc Urban Plan 90:102–110. doi:10.1016/j.landurbplan.2008.10.021

    Article  Google Scholar 

  • Federer CA (1976) Trees modify the urban microclimate. J Arboric 2:121–127

    Google Scholar 

  • Frazier AE, Wang L (2011) Characterizing spatial patterns of invasive species using sub-pixel classifications. Remote Sens Environ 115:1997–2007. doi:10.1016/j.rse.2011.04.002

    Article  Google Scholar 

  • Gallo KP, Mcnab AL, Karl TR, Brown JF, Hood JJ, Tarpley JD (1993) The use of NOAA AVHRR data for assessment of the urban heat island effect. J Appl Meteorol 32:899–908

    Article  Google Scholar 

  • Georgescu M, Chow WTL, Wang ZH, et al (2015) Prioritizing urban sustainability solutions: coordinated approaches must incorporate scale-dependent built environment induced effects. Environ Res Lett 10:61001. doi: 10.1088/1748-9326/10/6/061001

  • Grimmond S (2007) Urbanization and global environmental change: local effects of urban warming. Geogr J 173:83–88. doi:10.1111/j.1475-4959.2007.232_3.x

    Article  Google Scholar 

  • Grove JM, Cadenasso ML, Burch WR Jr, Pickett STA, Schwarz K, O’Neil-Dunne J, Wilson M, Troy A, Boone C (2006) Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Soc Nat Resour 19:117–136. doi:10.1080/08941920500394501

  • Hart M, Sailor D (2009) Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol 95:397–406. doi:10.1007/s00704-008-0017-5

    Article  Google Scholar 

  • Heisler GM (1986) Effects of individual trees on the solar radiation climate of small buildings. Urban Ecol 9:337–359. doi:10.1016/0304-4009(86)90008-2

    Article  Google Scholar 

  • Heisler GM, Grimmond S, Grant RH, Souch C (1994) Investigation of the influence of Chicago's urban forests on wind and air temperature within residential neighborhoods. In: McPherson EG, Nowak DJ, Rowntree RA (eds) Chicago’s urban forest ecosystem: results of the Chicago urban forest climate project (General Technical Report No. NE-186). U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Radnor, PA, p 201

  • Heynen N, Lindsey G (2003) Correlates of urban forest canopy cover. Public work. Manag Policy 8:33–47. doi:10.1177/1087724X03008001004

    Google Scholar 

  • Huang W, Kan H, Kovats S (2010) The impact of the 2003 heat wave on mortality in Shanghai, China. Sci Total Environ 408:2418–2420. doi:10.1016/j.scitotenv.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  • Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114:504–513. doi:10.1016/j.rse.2009.10.008

    Article  Google Scholar 

  • Iverson LR, Cook EA (2000) Urban forest cover of the Chicago region and its relation to household density and income. Urban Ecosyst 4:105–124. doi:10.1023/a:1011307327314

    Article  Google Scholar 

  • Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc Ecol 22:353–365. doi:10.1007/s10980-006-9032-z

    Article  Google Scholar 

  • Jenerette GD, Harlan SL, Stefanov WL, Martin CA (2011) Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in phoenix, USA. Ecol Appl 21:2637–2651. doi: 10.1890/10-1493.1

  • Jenerette GD, Miller G, Buyantuyev A, Pataki DE, Gillespie TW, Pincetl S (2013) Urban vegetation and income segregation in drylands: a synthesis of seven metropolitan regions in the southwestern United States. Environ Res Lett 8:044001. doi:10.1088/1748-9326/8/4/044001

  • Jenerette GD, Harlan SL, Buyantuev A, et al. (2015) Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc Ecol 31:745–760. doi:10.1007/s10980-015-0284-3

    Article  Google Scholar 

  • Jensen JR (2005) Introductory digital image processing: a remote sensing perspective. Pearson Prentice Hall, Upper Saddle River, NJ, USA

    Google Scholar 

  • Jim CY, Chen WY (2008) Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou, China. J Environ Manag 88:665–676. doi:10.1016/j.jenvman.2007.03.035

    Article  CAS  Google Scholar 

  • Kauth R, Thomas G (1976) The tasseled Cap – a graphic description of the spectraltemporal development of agricultural crops as seen by Landsat. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data (West Lafayette, Indiana: Laboratory for Applications of Remote Sensing, Purdue University).

  • Kershaw S, Millward A (2012) A spatio-temporal index for heat vulnerability assessment. Environ Monit Assess 184:7329–7342. doi:10.1007/s10661-011-2502-z

    Article  PubMed  Google Scholar 

  • Keshava N, Mustard JF (2002) Spectral unmixing. Signal process mag. IEEE 19:44–57. doi:10.1109/79.974727

    Google Scholar 

  • Klinenberg E (2012) Heat wave: a social autopsy of disaster in Chicago. University of Chicago Press, Chicago, IL

  • Landry S, Chakraborty J (2009) Street trees and equity: evaluating the spatial distribution of an urban amenity. Environ Plann A 41:2651–2670. doi:10.1068/a41236

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2007) Remote sensing and image interpretation. John Wiley and Sons, New York, NY

    Google Scholar 

  • Lohr VI, Pearson-Mims CH, Tarnai J, Dillman DA (2004) How urban residents rate and rank the benefits and problems associated with trees in cities. J Arboric 30:28–35

    Google Scholar 

  • Lu D, Weng Q (2006) Use of impervious surface in urban land-use classification. Remote Sens Environ 102:146–160. doi:10.1016/j.rse.2006.02.010

    Article  Google Scholar 

  • Maloley MJ (2010) Thermal remote sensing of urban heat island effects: Greater Toronto area (Open File No. 6283). Geological Survey of Canada. http://ftp2.cits.rncan.gc.ca/pub/geott/ess_pubs/263/263392/of_6283.pdf. Accessed 1 October 2012

  • McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37:n/a. doi:10.1029/2010gl042845

  • McPherson EG (1984) Energy-conserving site design. American Society of Landscape Architects, Washington DC

    Google Scholar 

  • McPherson EG, Scott KI, Simpson JR (1998) Estimating cost effectiveness of residential yard trees for improving air quality in Sacramento, California, using existing models. Atmos Environ 32:75–84. doi:10.1016/S1352-2310(97)00180-5

    Article  CAS  Google Scholar 

  • McPherson EG, Simpson JR, Peper PJ, Xiao Q (1999) Benefit-cost analysis, of Modesto’s municipal urban forest. J Arboric 25:235

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the twenty-first century. Science 305:994–997. doi:10.1126/science.1098704

    Article  CAS  PubMed  Google Scholar 

  • Millward AA (2011) Urbanisation viewed through a geostatistical lens applied to remote-sensing data. Area 43:53–66. doi:10.1111/j.1475–4762.2010.00956.x

    Google Scholar 

  • Millward AA, Piwowar JM, Howarth PJ (2006) Time-series analysis of medium-resolution, multisensor satellite data for identifying landscape change. Photogramm Eng Rem S 72:653–663. doi:10.14358/pers.72.6.653

  • Millward AA, Torchia M, Laursen AE, Rothman LD (2014) Vegetation placement for summer built surface temperature moderation in an urban microclimate. Environ Manag 53:1043–1057. doi:10.​1007/​s00267-014-0260-8

  • Mohsin T, Gough WA (2012) Characterization and estimation of urban heat island at Toronto: impact of the choice of rural sites. Theor Appl Climatol 108:105–117. doi:10.1007/s00704-011-0516-7

    Article  Google Scholar 

  • Newman P (2006) The environmental impact of cities. Environ Urban 18:275–295. doi:10.1177/0956247806069599

    Article  Google Scholar 

  • Nowak DJ (1994) Air pollution removal by Chicago’s urban forest. In: McPherson EG, Nowak DJ, Rowntree RA (eds.). Chicago’s urban forest ecosystem: Results of the Chicago urban forest climate project (USDA forest service gen. tech. rep. NE-18). US Department of Agriculture, Forest Service, Radnor, PA, USA

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389. doi:10.1016/S0269-7491(01)00214-7

    Article  CAS  PubMed  Google Scholar 

  • Nowak DJ, Greenfield EJ (2012a) Tree and impervious cover change in U.S. cities. Urban For Urban Gree 11:21–30. doi:10.1016/j.ufug.2011.11.005

    Article  Google Scholar 

  • Nowak DJ, Greenfield EJ (2012b) Tree and impervious cover in the United States. Landsc Urban Plan 107:21–30. doi:10.1016/j.landurbplan.2012.04.005

    Article  Google Scholar 

  • Nowak DJ, Walton JT (2005) Projected urban growth (2000–2050) and its estimated impact on the US forest resource. J Forest 103:383–389

    Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Gree 4:115–123. doi:10.1016/j.ufug.2006.01.007

    Article  Google Scholar 

  • Nowak DJ, Stein SM, Randler PB, Greenfield EJ, Comas SJ, Carr MA, Alig RJ (2010) Sustaining America’s urban trees and forests: a forests on the edge report (General Technical Report No. NRS-62). United States Department of Agriculture, Forest Service, Newton Square, PA

  • Oke TR (1976) The distinction between canopy and boundary layer urban heat islands. Atmosphere (Basel) 14:268–277

    Google Scholar 

  • Oke TR, Maxwell GB (1975) Urban heat island dynamics in Montreal and Vancouver. Atmos Environ 9:191–200. doi:10.1016/0004-6981(75)90067-0

    Article  Google Scholar 

  • Olszyna KJ, Luria M, Meagher JF (1997) The correlation of temperature and rural ozone levels in southeastern U.S.A. Atmos Environ 31:3011–3022. doi:10.1016/S1352-2310(97)00097-6

    Article  CAS  Google Scholar 

  • Perkins HA, Heynen N, Wilson J (2004) Inequitable access to urban reforestation: the impact of urban political economy on housing tenure and urban forests. Cities 21:291–299. doi:10.1016/j.cities.2004.04.002

    Article  Google Scholar 

  • Phinn S, Stanford M, Scarth P, Murray AT, Shyy PT (2002) Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques. Int J Remote Sens 23:4131–4153. doi:10.1080/01431160110114998

    Article  Google Scholar 

  • Prol-Ledesma R, Uribe-Alcantara E, Diaz-Molina O (2002) Use of cartographic data and Landsat TM images to determine land use change in the vicinity of Mexico City. Int J Remote Sens 23:1927–1933. doi:10.1080/01431160110087985

    Article  Google Scholar 

  • Rinner C, Hussain M (2011) Toronto’s urban heat island-exploring the relationship between land use and surface temperature. Remote Sens 3:1251–1265. doi:10.3390/rs3061251

    Article  Google Scholar 

  • Rogerson P (2006) Statistical methods for geography: a student guide. Sage, London, UK

    Google Scholar 

  • Rosenzweig C, Solecki WD, Slosberg R (2006) Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. a report to the New York State Energy Research and Development Authority. http://www.giss.nasa.gov/research/news/20060130/103341.pdf. Accessed 14 November 2012

  • Roth M (2013) Urban heat islands. In: Harindra JF (ed) Handbook of environmental fluid dynamics, volume two: systems, pollution, modeling, and measurements. CRC Press, Boca Raton, FL, pp 143–160. doi:10.1201/b13691-13

  • Roth M, Oke TR, Emery WJ (1989) Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int J Remote Sens 10:1699–1720. doi:10.1080/01431168908904002

    Article  Google Scholar 

  • Rowntree RA, Nowak DJ (1991) Quantifying the role of urban forests in removing atmospheric carbon dioxide. J Arboric 17:269–275

    Google Scholar 

  • Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343:1742–1749. doi:10.1056/NEJM200012143432401

  • Satterthwaite D (1997) Sustainable cities or cities that contribute to sustainable development? Urban Stud 34:1667–1691. doi:10.1080/0042098975394

    Article  Google Scholar 

  • Sawka M, Millward AA, Mckay J, Sarkovich M (2013) Growing summer energy conservation through residential tree planting. Landsc Urban Plan 113:1–9. doi:10.1016/j.landurbplan.2013.01.006

    Article  Google Scholar 

  • Schwartz H (2004) The relevance of Toronto’s new governmental structure for the twenty-first century. Can J Reg Sci 27:99–120

    Google Scholar 

  • Stone B, Rodgers MO (2001) Urban form and thermal efficiency: how the design of cities influences the urban heat island effect. J Am Plan Assoc 67:186–198. doi:10.1080/01944360108976228

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240. doi:10.2307/143141

    Article  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2014) World urbanization prospects: the 2014 revision, highlights (ST/ESA/SER.A/352). United Nations, New York, NY, USA

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384. doi:10.1016/S0034-4257(03)00079-8

    Article  Google Scholar 

  • Wang Y, Berardi U, Akbari H (2015) Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build 118:137–144. doi:10.1016/j.enbuild.2015.06.046

    CAS  Google Scholar 

  • Weng Q (2001) A remote sensing–-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int J Remote Sens 22:1999–2014. doi:10.1080/01431160118847

    Google Scholar 

  • World Health Organization, Regional Office for Europe (2006) Air quality guidelines: Global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide (WHO/SDE/PHE/OEH/06.02). World Health Organization, Geneva, CH, Switzerland

  • Zhang P, Imhoff ML, Wolfe RE, Bounoua L (2010) Characterizing urban heat islands of global settlements using MODIS and nighttime lights products. Can J Remote Sens 36:185–196. doi:10.5589/m10-039

    Article  Google Scholar 

  • Zipperer WC, Sisinni SM, Pouyat RV, Foresman TW (1997) Urban tree cover: an ecological perspective. Urban Ecosyst 1:229–246. doi:10.1023/a:1018587830636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Greene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greene, C.S., Millward, A.A. Getting closure: The role of urban forest canopy density in moderating summer surface temperatures in a large city. Urban Ecosyst 20, 141–156 (2017). https://doi.org/10.1007/s11252-016-0586-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-016-0586-5

Keywords

Navigation