Skip to main content
Log in

Experimental Investigation of the Correlation Between Adhesion and Friction Forces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this study, the effect of adhesion on evolution of friction during the transition of the contact from pre-sliding into full sliding was investigated. In order to achieve the objectives, a micro optical friction (MOF) apparatus was developed to conduct dry sliding friction experiments and to allow for in situ visualization of the contact area for a sphere-on-flat configuration. MOF apparatus was used to measure friction under various load and speed combinations. The friction results exhibit the commonly observed behavior in friction (i.e., static friction is larger than dynamic friction). The results also demonstrated that the difference between static and dynamic friction forces increased with an increase in the applied normal load. We hypothesize and demonstrate that the difference between the measured maximum friction force commonly referred to as static friction force and the steady state or dynamic friction force divided by the dynamic coefficient of friction is the force of adhesion. The adhesion force results obtained from our experimental investigation corroborate well with the force of adhesion described by the DMT model. The reduction in friction force is attributed to the diminishing of adhesion force during full sliding of the contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(a_{\text{H}}\) :

Hertzian contact radius

\(a_{\text{DMT}}\) :

Contact radius predicted by the DMT theory

A ap :

Apparent contact area

E :

Equivalent Young’s modulus, \(\frac{1}{{E^{'} }} = \frac{1}{2}\left( {\frac{{1 - \nu_{\text{s}}^{2} }}{{E_{\text{s}} }} + \frac{{1 - \nu_{\text{p}}^{2} }}{{E_{\text{p}} }}} \right)\)

E s, E p :

Young’s moduli of the sphere and plane

f d :

Dynamic friction force

f max :

Maximum friction force

F a :

Frictional force caused by adhesion

F ad :

Force of adhesion

F d :

Frictional force caused by elastic deformation

F f :

Total friction force

F n :

Applied normal force

NA:

Numerical aperture of the microscope objective

R :

Radius of the sphere

δ i :

Input tangential displacement amplitude

δ o :

Output tangential displacement

λ :

Wavelength of light

μ d :

Dynamic coefficient of friction

ν s, ν p :

Poisson’s ratio of the sphere and plane

References

  1. Hähner, G., Spencer, N.: Rubbing and scrubbing. Phys. Today 51, 22–27 (1998)

    Article  Google Scholar 

  2. Bhushan, B.: Introduction to tribology, 2nd edn. John Wiley & Sons, New York (2013)

    Book  Google Scholar 

  3. Tabor, D.: Friction—the present state of our understanding. J. Lubr. Technol. 103, 169–179 (1981)

    Google Scholar 

  4. Bhushan, B.: Tribology and mechanics of magnetic storage devices, 2nd edn. Springer, New York (1996)

    Book  Google Scholar 

  5. Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Oxford University Press, Oxford (1964)

    Google Scholar 

  6. Tabor, D.: Tribology—the last 25 years a personal view. Tribol. Int. 28, 7–10 (1995)

    Article  Google Scholar 

  7. Tambe, N.S., Bhushan, B.: Identifying materials with low friction and adhesion for nanotechnology applications. Appl. Phys. Lett. 86, 061906 (2005)

    Article  Google Scholar 

  8. Heim, L., Blum, J., Preuss, M., Butt, H.: Adhesion and friction forces between spherical micrometer-sized particles. Phys. Rev. Lett. 83, 3328–3331 (1999)

    Article  Google Scholar 

  9. Berger, E.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55, 535–577 (2002)

    Article  Google Scholar 

  10. Dieterich, J.H.: Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys. 116, 790–806 (1978)

    Article  Google Scholar 

  11. Persson, B.N.J.: Sliding friction: physical principles and applications, 2nd edn. Springer, Berlin (2000)

    Book  Google Scholar 

  12. Williams, J.: Engineering tribology. Oxford University Press, Oxford (1994)

    Google Scholar 

  13. Qing, T., Shao, T., Wen, S.: Micro-friction and adhesion measurements for Si wafer and TiB2 thin film. Tsinghua Sci. Technol. 12, 261–268 (2007)

    Article  Google Scholar 

  14. Li, Q., Tullis, T.E., Goldsby, D., Carpick, R.W.: Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011)

    Article  Google Scholar 

  15. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Ser. A 324, 301–313 (1971)

    Article  Google Scholar 

  16. Muller, V.M., Derjaguin, B.V., Toporov, Y.P.: On two methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Colloids Surf. 7, 251–259 (1983)

    Article  Google Scholar 

  17. Adams, G.G.: Stick, partial slip and sliding in the plane strain micro contact of two elastic bodies. R. Soc. Open Sci. 1, 140363 (2014)

    Article  Google Scholar 

  18. Holm, R.: Electric contacts handbook. Springer-Verlag, Berlin (1958)

    Google Scholar 

  19. Diaconescu, E., Glovnea, M.: Visualization and measurement of contact area by reflectivity. ASME. J. Tribol. 128, 915–917 (2006)

    Article  Google Scholar 

  20. Ovcharenko, A., Halperin, G., Verberne, G., Etsion, I.: In situ investigation of the contact area in elastic–plastic spherical contact during loading–unloading. Tribol. Lett. 25, 153–160 (2007)

    Article  Google Scholar 

  21. Krick, B.A., Vail, J.R., Persson, B.N., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 45, 185–194 (2012)

    Article  Google Scholar 

  22. Ovcharenko, A., Halperin, G., Etsion, I.: Experimental study of adhesive static friction in a spherical elastic–plastic contact. J. Tribol. Trans. ASME 130, 021401 (2008)

    Article  Google Scholar 

  23. Ovcharenko, A., Halperin, G., Etsion, I., Varenberg, M.: A novel test rig for in situ and real time optical measurement of the contact area evolution during pre-sliding of a spherical contact. Tribol. Lett. 23, 55–63 (2006)

    Article  Google Scholar 

  24. Mortensen, K.I., Churchman, L.S., Spudich, J.A., Flyvbjerg, H.: Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010)

    Article  Google Scholar 

  25. Ramalho, A., Celis, J.-P.: Fretting laboratory tests: analysis of the mechanical response of test rigs. Tribol. Lett. 14, 187–196 (2003)

    Article  Google Scholar 

  26. Leonard, B.D., Sadeghi, F., Shinde, S., Mittelbach, M.: A novel modular fretting wear test rig. Wear 274, 313–325 (2012)

    Article  Google Scholar 

  27. Hertz, H.: On the contact of elastic solids. J. Reine. Angew. Math. 92, 156–171 (1882)

    Google Scholar 

  28. Hills, D.A., Nowell, D.: Mechanics of fretting fatigue. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  29. Tabor, D.: Friction as a dissipative process. In: Singer, I.L., Pollock, H.M. (eds.) Fundamentals of friction: macroscopic and microscopic processes, pp. 3–24. Kluwer, Dordrecht (1992)

    Chapter  Google Scholar 

  30. Eriten, M., Polycarpou, A., Bergman, L.: Physics-based modeling for partial slip behavior of spherical contacts. Int. J. Solids Struct. 47, 2554–2567 (2010)

    Article  Google Scholar 

  31. Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribol. Lett. 16, 95–105 (2004)

    Article  Google Scholar 

  32. Chang, L., Zhang, H.: A mathematical model for frictional elastic–plastic sphere-on-flat contacts at sliding incipient. ASME J. Appl. Mech. 74, 100–106 (2007)

    Article  Google Scholar 

  33. Briscoe, W.H., Klein, J.: Friction and adhesion hysteresis between surfactant monolayers in water. J. Adhes. 83, 705–722 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deepest appreciations to the SKF Company for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alazemi, A.A., Ghosh, A., Sadeghi, F. et al. Experimental Investigation of the Correlation Between Adhesion and Friction Forces. Tribol Lett 62, 30 (2016). https://doi.org/10.1007/s11249-016-0679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0679-6

Keywords

Navigation