Skip to main content
Log in

The Innateness Hypothesis and Mathematical Concepts

  • Published:
Topoi Aims and scope Submit manuscript

Abstract

In historical claims for nativism, mathematics is a paradigmatic example of innate knowledge. Claims by contemporary developmental psychologists of elementary mathematical skills in human infants are a legacy of this. However, the connection between these skills and more formal mathematical concepts and methods remains unclear. This paper assesses the current debates surrounding nativism and mathematical knowledge by teasing them apart into two distinct claims. First, in what way does the experimental evidence from infants, nonhuman animals and neuropsychology support the nativist hypothesis? Second, granting that infants have some elementary mathematical skills, does this mean that such skills play an important role in the development of mathematical knowledge?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antell SE, Keating DP (1983) Perception of numerical invariance in neonates. Child Dev 54:697–701

    Article  Google Scholar 

  • Benacerraf P (1973) Mathematical truth. J Philos 70:661–680

    Article  Google Scholar 

  • Berger A, Tzur G, Posner M (2006) Infant brains detect arithmetic errors. Proc Natl Acad Sci USA 103:12649–12653

    Article  Google Scholar 

  • Biro D, Matsuzawa T (2001) Chimpanzee numerical competence: cardinal and ordinal skills. In: Matsuzawa T (ed) Primate origins of human cognition and behavior. Springer, Tokyo, pp 199–225

    Google Scholar 

  • Brannon EM (2002) The development of ordinal numerical knowledge in infancy. Cognition 83:223–240

    Article  Google Scholar 

  • Butterworth B, Reeve R, Reynolds F, Lloyd D (2008) Numerical thought with and without words: evidence from indigenous Australian children. Proc Natl Acad Sci USA 105:13179–13184

    Article  Google Scholar 

  • Carey S (2004) Bootstrapping and the origin of concepts. Daedalus 133:59–68

    Article  Google Scholar 

  • Cohen LB, Marks KS (2002) How infants process addition and subtraction events. Dev Sci 5:186–212

    Article  Google Scholar 

  • Davis PJ, Hersh R (1981) The mathematical experience. Birkhauser, Boston

    Google Scholar 

  • De Cruz H (2008) An extended mind perspective on natural number representation. Philos Psychol 21:475–490

    Article  Google Scholar 

  • De Cruz H (2009) An enhanced argument for innate elementary geometric knowledge and its philosophical implications. In: Van Kerkhove B (ed) New perspectives on mathematical practices. Essays in philosophy and history of mathematics. World Scientific, New Jersey, pp 185–206

    Google Scholar 

  • Decock L (2008) The conceptual basis of numerical abilities: one-to-one correspondence versus the successor relation. Philos Psychol 21:459–473

    Article  Google Scholar 

  • Dehaene S, Izard V, Spelke E, Pica P (2008) Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science 320:1217–1220

    Article  Google Scholar 

  • Descartes R (1988) 1637, Le discours de la méthode, la dioptrique, les météores et la géometrie. In: Alquie F (ed) Œuvres philosophiques de Descartes. Classiques Garnier, Paris, pp 549–761

  • Feigenson L, Dehaene S, Spelke ES (2004) Core systems of number. Trends Cogn Sci 8:307–314

    Article  Google Scholar 

  • Flombaum JI, Junde JA, Hauser MD (2005) Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition 97:315–325

    Article  Google Scholar 

  • Frank MC, Everett DL, Fedorenko E, Gibson E (2008) Number as a cognitive technology: evidence from Pirahã language and cognition. Cognition 108:819–824

    Article  Google Scholar 

  • Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from reals to integers. Trends Cogn Sci 4:59–65

    Article  Google Scholar 

  • Gilmore CK, McCarthy SE, Spelke ES (2007) Symbolic arithmetic knowledge without instruction. Nature 447:589–591

    Article  Google Scholar 

  • Gordon P (2004) Numerical cognition without words: evidence from Amazonia. Science 306:496–499

    Article  Google Scholar 

  • Grabiner JV (1986) Is mathematical truth time-dependent? In: Tymoczko T (ed) New directions in the philosophy of mathematics. Birkhauser, Boston, pp 201–213

    Google Scholar 

  • Greiffenhagen C, Sharrock W (2006) Mathematical relativism: logic, grammar and arithmetic in cultural comparison. J Theory Soc Behav 36:97–117

    Article  Google Scholar 

  • Haith MM (1998) Who put the cog in infant cognition? Is rich interpretation too costly? Infant Behav Dev 21:167–179

    Article  Google Scholar 

  • Halberda J, Mazzocco MM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455:665–668

    Article  Google Scholar 

  • Jordan KE, Brannon EM (2006) The multisensory representation of number in infancy. Proc Natl Acad Sci USA 103:3486–3489

    Article  Google Scholar 

  • Kant I (2005) In: Guyer P, Wood AW (eds) 1781, Critique of pure reason. Cambridge University Press, Cambridge

  • Kobayashi T, Hiraki K, Mugitani R, Hasegawa T (2004) Baby arithmetic: one object plus one tone. Cognition 91:B23–B34

    Article  Google Scholar 

  • Koechlin E, Dehaene S, Mehler J (1998) Numerical transformations in five-month-old human infants. Math Cogn 3:89–104

    Article  Google Scholar 

  • Laurence S, Margolis E (2005) Number and natural language. In: Carruthers P, Laurence S, Stich S (eds) The innate mind. Structure and contents. Oxford University Press, Oxford, pp 216–235

    Google Scholar 

  • Le Corre M, Carey S (2007) One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition 105:395–438

    Article  Google Scholar 

  • Leibniz GW (2001) In: Remnant P, Bennett JF (eds) 1765, New essays on human understanding. Cambridge University Press, Cambridge

  • Mameli M, Bateson P (2006) Innateness and the sciences. Biol Philos 21:155–188

    Article  Google Scholar 

  • McCrink K, Wynn K (2004) Large-number addition and subtraction by 9-month-old infants. Psychol Sci 15:776–781

    Article  Google Scholar 

  • Meck WH, Church RM (1983) A mode control model of counting and timing processes. J Exp Psychol Anim Behav Process 9:320–334

    Article  Google Scholar 

  • Piaget J (1952) The child’s conception of number. Norton, New York

    Google Scholar 

  • Plato: ca. 380 B.C. (2000) Meno. In: Cahn SM (ed) Exploring philosophy. An introductory anthology. Oxford University Press, New York, pp 117–151

  • Resnik MD (1982) Mathematics as the science of patterns: epistemology. Noûs 16:95–105

    Article  Google Scholar 

  • Rips L, Bloomfield A, Asmuth J (2008) From numerical concepts to concepts of number. Behav Brain Sci 31:623–642

    Article  Google Scholar 

  • Samuels R (2002) Nativism in cognitive science. Mind Lang 17:233–265

    Google Scholar 

  • Samuels R (2004) Innateness in cognitive science. Trends Cogn Sci 8:136–141

    Article  Google Scholar 

  • Saxe GB (1985) Effects of schooling on arithmetic understandings: studies with Oksapmin children in Papua New Guinea. J Educ Psychol 77:503–513

    Article  Google Scholar 

  • Shapiro S (1997) Philosophy of mathematics: structure and ontology. Oxford University Press, Oxford

    Google Scholar 

  • Siegler RS, Booth JL (2004) Development of numerical estimation in young children. Child Dev 75:428–444

    Article  Google Scholar 

  • Spelke ES, Kinzler KD (2007) Core knowledge. Dev Sci 10:89–96

    Article  Google Scholar 

  • Thune CE (1978) Numbers and counting in Loboda: an example of a non-numerical oriented culture. Papua New Guinea J Educ 14:69–80

    Google Scholar 

  • Thurston W (2006) On proof and progress in mathematics. In: Hersh R (ed) 18 Unconventional essays on the nature of mathematics. Springer, New York, pp 37–55

    Chapter  Google Scholar 

  • Tudusciuc O, Nieder A (2007) Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proc Natl Acad Sci USA 104:14513–14518

    Article  Google Scholar 

  • Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim Cogn 6:105–112

    Google Scholar 

  • Venkatraman V, Ansari D, Chee MWL (2005) Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia 43:744–753

    Article  Google Scholar 

  • Wassmann J, Dasen PR (1994) Yupno number system and counting. J Cross Cult Psychol 25:78–94

    Article  Google Scholar 

  • Whalen J, Gallistel C, Gelman R (1999) Nonverbal counting in humans: the psychophysics of number representation. Psychol Sci 10:130–137

    Article  Google Scholar 

  • Wynn K (1992) Addition and subtraction by human infants. Nature 358:749–750

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by grant 3H070815 from the Research Foundation Flanders and grant COM07/PWM/001 from Ghent University. We thank Leon Horsten for comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen De Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cruz, H., De Smedt, J. The Innateness Hypothesis and Mathematical Concepts. Topoi 29, 3–13 (2010). https://doi.org/10.1007/s11245-009-9061-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11245-009-9061-8

Keywords

Navigation