Skip to main content
Log in

Catalytic Consequences of a Revised Distribution of Key Elements at the Active Centers of the M1 Phase of the MoVNbTeOx System

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In an earlier publication (Grasselli et al., Top Catal 54:595, 2011) [1] we analyzed the distribution of key catalytic elements at the active site of the M1 phase of the MoVNbTeOx catalyst system based on the definition of this center put forth in our original work (Grasselli et al., Top Catal 23:5, 2003) [2]. From that analysis we derived the probabilities of the metal element distributions at the active center and its immediate surroundings, and based on those results, proposed a model for propane ammoxidation on M1. Recently, the occupancies and concomitant charges of the various elements of the M1 phase have been revised (Li et al., Top Catal 54:614, 2011) [3]. Based on this revised structural model we have now recalculated the elemental probabilities at the active center and its immediate surroundings, and describe here the catalytic consequences in the ammoxidation mechanism of propane that these changes portend. Our revised model (REV) predicts more closely the actual experimental results of propane ammoxidation over MoVNbTeOx than does our first model (ORIG). The results obtained are: ORIG Model: 41 % AN (acrylonitrile) concerted, 82 % total possible AN; REV Model: 43 % AN concerted, 59 % total possible AN; experimental: 42 % AN concerted, 62 % total possible AN using both the M1 + M2 phases. Comparing the original (Grasselli et al., Top Catal 23:5, 2003) [2] and current (Li et al., Top Catal 54:614, 2011) [3] elemental distributions at the active centers of M1 and the ORIG and REV ammoxidation reaction pathways (from the derived models), it is readily apparent that higher concentrations of V5+ at the active centers lead to undesirable overoxidation of propane and thus lower AN selectivity. Therefore, decreasing the surface concentration of vanadium in M1 (to favor more site isolated V5+ sites) should be beneficial and lead to better AN selectivities and yields. Additionally, selective doping or selective isomorphous substitution of M1 (and/or M2) should also be useful approaches towards improved AN yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Grasselli RK, Lugmair CG, Volpe AF Jr (2011) Top Catal 54:595

    Article  CAS  Google Scholar 

  2. Grasselli RK, Burrington JD, Buttrey DJ, De Santo P, Jr Lugmair CG, Volpe AF Jr, Weingand T (2003) Top Catal 23:5

    Article  CAS  Google Scholar 

  3. Li X, Buttrey DJ, Blom DA, Vogt T (2011) Top Catal 54:614

    Article  CAS  Google Scholar 

  4. Grasselli RK, Tenhover MA, (2008) Ammoxidation. In: Ertl G, Knözinger H,. Schüth F, Weitkamp J (eds) Handbook of Heterogeneous Catalysis, 2nd ed, Ch. 14.11.9., Wiley-VCH, Weinheim, p 3489

  5. http://www.asahi-kasei.com/asahi/en/r_and_d/products.html, and http://www.chemicals-technology.com/projects/-ptt-asahi-chemical-acrylonitrile-methyl-methacrylate/. Accessed Nov 2013

  6. Grasselli RK, (1997) Ammoxidation. In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of Heterogeneous Catalysis, 1st ed, Ch. 4.6.6., Wiley-VCH, Weinheim, p 2302

  7. Bart JCJ, Giordano N (1980) J. Catal. 64:356

    Article  CAS  Google Scholar 

  8. Bart JCJ, Giordano N (1984) Ind. Eng. Chem. Prod. Res. Dev. 23:56

    Article  CAS  Google Scholar 

  9. Hatano M, Kayo A (1988) European Patent 318:295

    Google Scholar 

  10. Ushikubo T, Oshima K, Kayo A, Umezawa T, Kiyono K, Sawaki I (1992) European Patent 529:853

    Google Scholar 

  11. Ushikubo T, Nakamura H, Koyasu Y, Wajiki S (1994) European Patent 608:838

    Google Scholar 

  12. Komada S, Hinago H, Kaneta M, Watanabe M (1998) European Patent 895:809

    Google Scholar 

  13. Vaarkamp M, Ushikubo T (1998) Appl Catal A 174:99

    Article  CAS  Google Scholar 

  14. Ushikubo T (2000) Catal Today 57:331

    Article  CAS  Google Scholar 

  15. Grasselli RK, Buttrey DJ, Burrington JD, Andersson A, Holmberg J, Ueda W, Kubo J, Lugmair CG, Volpe AF Jr (2006) Top Catal 38:7

    Article  CAS  Google Scholar 

  16. Grasselli RK, Lugmair CG, Volpe AF Jr (2008) Top Catal 50:66

    Article  CAS  Google Scholar 

  17. Biswas P, Woo J, Guliants VV (2010) Catal Comm 12:58

    Article  CAS  Google Scholar 

  18. Lopez Nieto JM, Solsona B, Concepcion P, Ivars F, Dejoz A, Vazquez MI (2010) Catal Today 157:291

    Article  CAS  Google Scholar 

  19. Naraschewski FN, Kumar CP, Jentys A, Lercher JA (2011) Appl Catal A 391:63

    Article  CAS  Google Scholar 

  20. Ramli I, Botella P, Ivars F, Meng WP, Zawawi SMM, Ahangar HA, Hernandez S, Lopez Nieto JM (2011) J Mol Catal A 342–343:50

    Article  Google Scholar 

  21. Nguyen TT, Burela L, Nguyenb DL, Pham-Huuc C, Millet JMM (2012) Appl Catal A 433–434:41

    Article  Google Scholar 

  22. López-Medinaa R, Rojasa E, Bañares MA, Guerrero-Pérez MO (2012) Catal Today 192:67

    Article  Google Scholar 

  23. Hävecker M, Wrabetz S, Kröhnert J, Csepei LI, Naumann d’Alnoncourt R, Kolen’ko YV, Girgsdies F, Schlögl R, Trunschke A (2012) J Catal 285:48

    Article  Google Scholar 

  24. Burrington JD, Kartisek C, Grasselli RK (1984) J Catal 87:363

    Article  CAS  Google Scholar 

  25. Jang YH, Goddard III WA (2001) Top Catal 38:273

    Article  Google Scholar 

  26. Goddard WA, Chenoweth K, Pudar S, van Duin ACT, Cheng M-J (2008) Top Catal 50:2

    Article  CAS  Google Scholar 

  27. Holmberg J, Grasselli RK, Andersson A (2003) Top Catal 23:55

    Article  CAS  Google Scholar 

  28. Holmberg J, Grasselli RK, Andersson A (2004) Appl Catal A 270:121

    Article  CAS  Google Scholar 

  29. Grasselli RK (2005) Catal Today 99:23

    Article  CAS  Google Scholar 

  30. Pyrz WD, Blom DA, Shadakane M, Kadato K, Ueda W, Vogt T, Buttrey DJ (2010) Proc Acad Sci 107:6152

    Article  CAS  Google Scholar 

  31. Guiliants WV, Bhandari R, Al-Saeedi JN, Vasudevan VK, Soman RS, Guerrero-Pérez O, Bañares MA (2004) Appl Catal A 274:123

    Article  Google Scholar 

  32. Ueda W, Vitry D, Katou T (2005) Catal Today 99:43

    Article  CAS  Google Scholar 

  33. Baca M, Aouine M, Dubois JL, Millet JMM (2005) J Catal 233:234

    Article  CAS  Google Scholar 

  34. Oliver JM, López Nieto JM, Botella P (2004) Catal Today 96:241

    Article  CAS  Google Scholar 

  35. Holmberg J, Häggblad R, Andersson A (2006) J Catal 243:350

    Article  CAS  Google Scholar 

  36. Callahan JL, Grasselli RK (1963) AIChE J 9:755

    Article  CAS  Google Scholar 

  37. Grasselli RK, Burrington JD (1981) Adv Catal 30:133

    CAS  Google Scholar 

  38. Grasselli RK (1999) Catal Today 49:141

    Article  CAS  Google Scholar 

  39. Grasselli RK (2001) Top Catal 15:93

    Article  CAS  Google Scholar 

  40. Grasselli RK (2002) Top Catal 21:79

    Article  CAS  Google Scholar 

  41. Gaffney AM, Gosh R, Song R, Yeh C.Y, Langner T, (2012) US Patent 8,105,971 and US Patent 8,105,972

  42. Gaffney AM, (2013) ACS Petrol. Div. Preprints, Spring Nat. Mtg

  43. Ueda W (2014) Top Catal., This issue

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Grasselli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grasselli, R.K., Volpe, A.F. Catalytic Consequences of a Revised Distribution of Key Elements at the Active Centers of the M1 Phase of the MoVNbTeOx System. Top Catal 57, 1124–1137 (2014). https://doi.org/10.1007/s11244-014-0286-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0286-4

Keywords

Navigation