Skip to main content
Log in

Study of Water–Gas-Shift Reaction over La(1−y)SryNixCo(1−x)O3 Perovskite as Precursors

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The performance of La(1−y)SryNixCo(1−x)O3 perovskites for the water gas shift reaction (WGSR) was investigated. The samples were prepared by the co- precipitation method and were performed by the BET method, XRD, TPR, and XPS. The catalytic tests were performed at 300 and 400 °C and H2Ov/CO = 2.3/1 (molar ratio). The sample with the highest surface area is La0.70Sr0.30NiO3. The XRD results showed the formation of perovskite structure for all samples, and the La0.70Sr0.30NiO3 sample also presented peaks corresponding to La2NiO4 and NiO, indicating that the solubility limit of Sr in the perovskite lattice was surpassed. The replacement of Co by Ni favored the reduction of the species at lower temperatures, and the sample containing Sr presented the highest amount of reducible species, as identified by TPR results. All samples were active, the Sr containing perovskite appearing the most active due to the highest surface area, presence of the La2NiO4 phase, and higher content of Cu in the surface, as detected by XPS. Among the samples containing Co, the most active one was that with x = 0.70 (60% of CO conversion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evdou A, Zascpalis V, Nalbandian L (2008) Int J Hydrogen Energy 33:5554

    Article  CAS  Google Scholar 

  2. Tiemersma TP, Patil CS, Sint Annaland MV, Kuipers JAM (2006) Chem Eng Sci 61:1602

    Article  CAS  Google Scholar 

  3. Chen WH, Lin MR, Jiang TL, Chen MH (2008) Int J Hydrogen Energy 33:6644

    Article  CAS  Google Scholar 

  4. Merino NA, Barbero BP, Grange P, Cadús LE (2005) J Catal 231:232

    Article  CAS  Google Scholar 

  5. Seyfi B, Baghalha M, Kazemian H (2009) Chem Eng J 148:306

    Article  CAS  Google Scholar 

  6. Merino NA, Barbero BP, Eloy P, Cadús LE (2006) Appl Surf Sci 253:1489

    Article  CAS  Google Scholar 

  7. Araujo GC, Lima S, Rangel MC, Parola V, Peña MA, Fierro JLG (2005) Catal Today 107–108:906

    Google Scholar 

  8. Wei HJ, Cao Y, Ji WJ, Au CT (2008) Catal Commun 9:2509

    Article  CAS  Google Scholar 

  9. Liu Y, Zheng H, Liu J, Zhang T (2002) Chem Eng J 89:213

    Article  CAS  Google Scholar 

  10. de Lima SM, Peña MA, Fierro JLG, Assaf JM (2007) Natural Gas Convers VIII 167:481

    Article  Google Scholar 

  11. Lima SM, Assaf JM, Peña MA, Fierro JLG (2006) Appl Catal A 311:94

    Article  CAS  Google Scholar 

  12. Anderson MT, Vaughey JT, Poeppelmeier KR (1993) Chem Mater 5:151

    Article  CAS  Google Scholar 

  13. Huang L, Bassir M, Kaliaguine S (2007) Mater Chem Phys 101:259

    Article  CAS  Google Scholar 

  14. Profeti LPR, Ticianelli EA, Assaf EM (2008) J Power Sour 175:482

    Article  CAS  Google Scholar 

  15. Gallego GS, Mondragón F, Barrault J, Tatibouët JM, Batiot-Dupeyrat C (2006) Appl Catal A 311:164

    Article  CAS  Google Scholar 

  16. Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragón F (2008) Appl Catal A. 334:251

    Article  CAS  Google Scholar 

  17. Jing FJ, Wang L, Liu YW, Fu RKY, Zhao XB, Shen R, Huang N, Chu PK (2006) Thin Solid Films 515:1219

    Article  CAS  Google Scholar 

  18. Pereňíguez R, González-DelaCruz VM, Holgado JP, Caballero A (2010) Appl Catal B 93:346

    Article  Google Scholar 

  19. O’Connell M, Norman AK, Hűettermann CF, Morris MA (1999) Catal Today 47:123

    Article  Google Scholar 

  20. Białobok B, Trawczyński J, Miśta W, Zawadzki M (2007) Appl Catal B 72:395

    Article  Google Scholar 

  21. Zhu Y, Tan R, Yi T, Gao S, Yan C, Cao L (2000) J. Alloys and Compd. 311:16

    Article  CAS  Google Scholar 

  22. Rivas ME, Fierro JLG, Guil-López R, Peňa MA, Parola VLa, Goldwasser MR (2008) Catal Today 133–135:367

    Article  Google Scholar 

  23. Seim H, Niemine M, Niinistö L, Fjellvag H, Johansson LS (1997) Appl Surf Sci 112:243

    Article  CAS  Google Scholar 

  24. Wang P, Yao L, Wang M, Wu W (2000) J Alloys Compd 311:53

    Article  CAS  Google Scholar 

  25. Goldwasser MR, Rivas ME, Pietri E, Pérez-Zurita MJ, Cubeiro ML, Grivobal-Constant A, Leclercq G (2005) J Mol Catal A 228:325

    Article  CAS  Google Scholar 

  26. de García la Cruz RM, Falcón H, Peña MA, Fierro JLG (2001) Appl Catal B 33:45

    Article  Google Scholar 

  27. Rynkowski J, Samulkiewics P, Ladavos AK, Pomonis PJ (2004) Appl Catal A 263:1

    Article  CAS  Google Scholar 

  28. Tejuca LG, Fierro JLG (1993) Properties and applications of perovskite-type oxides. Marcel Dekker, New York

    Google Scholar 

  29. Tofan C, Klvana D, Kirchnerova J (2002) Appl Catal B 36:311

    Article  CAS  Google Scholar 

  30. Belessi VC, Costa CN, Bakas TV, Anastasiadou T, Pomonis PJ, Efstathiou AM (2000) Catal Today 59:347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian agencies FAPESP and CNPq for financial assistance, and the Chemical Engineering Department of the Federal University of São Carlos for the XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Maluf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maluf, S.S., Tanabe, E.Y., Nascente, P.A.P. et al. Study of Water–Gas-Shift Reaction over La(1−y)SryNixCo(1−x)O3 Perovskite as Precursors. Top Catal 54, 210–218 (2011). https://doi.org/10.1007/s11244-011-9654-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9654-5

Keywords

Navigation