Skip to main content
Log in

Analytical Solutions for Steady Phreatic Flow Appearing/Re-emerging Toward/from a Bedrock/Caprock Isobaric Breach: The Polubarinova-Kochina–Numerov and Pavlovsky Problems Revisited

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Analytical solutions for steady, confined and unconfined Darcian flows in aquifers breached by “windows” in caprocks or bedrocks with applications to hillslope hydrology are presented. As compared with classical Polubarinova-Kochina, Numerov and Pavlovsky analytical solutions, the aquifers are sloping and the “window” is a finite-size isobaric segment, which due to the aquifer dip brings about a nonconstant head boundary condition. The velocity hodograph, method of boundary value problems and conformal mappings are used for obtaining solutions of essentially 2D seepage problems with Laplace’s PDE as a governing equation and the nonlinear phreatic surface for an unconfined flow. The second-order hydraulic theory with Picard’s iteration is used for deriving and solving a nonlinear ODE with respect to the shape of the water table, that is, compared with standard Dupuit–Forchheimer computations. The size of the “window,” incident flow parameters upstream of the “window” and the angle of tilt determine the disturbance to a main aquifer, mundanely normal “longitudinal” flow, which may completely dive or unexpectedly extravasate into a commingled adjacent subjacent–superjacent layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BVP:

Boundary value problem

DF:

Dupuit–Forchheimer

PK:

Polubarinova-Kochina [reference to Polubarinova-Kochina (1977)]

References

  • Al-Amri, M.: Hydrologic and hydrogeologic responses of springs to rainfall in Garsias and Arzat upper catchments. M.Sc. Thesis. Sultan Qaboos University, Muscat (2006)

  • Aravin, V.I., Numerov, S.N.: Theory of Fluid Flow in Undeformable Porous Media. Gostekhizdat, Moscow (1953). Translated Israel Program for Scientific Translation, Jerusalem (1965) (in Russian)

  • Bear, J.: The Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  • Bense, V.F., Gleeson, T., Loveless, S.E., Bour, O., Scibek, J.: Fault zone hydrogeology. Earth Sci. Rev. 127, 171–192 (2013)

    Article  Google Scholar 

  • Broda, S., Paniconi, C., Larocque, M.: Numerical investigation of leakage in sloping aquifers. J. Hydrol. 409, 49–61 (2011)

    Article  Google Scholar 

  • Castro-Orgaz, O., Giráldez, J.V., Robinson, N.: Second order two-dimensional solution for the drainage of recharge based on Picard’s iteration technique: a generalized Dupuit–Forchheimer equation. Water Resour. Res. 48, W06516 (2012). doi:10.1029/2011WR011751

    Google Scholar 

  • Castro-Orgaz, O., Hager, W.H.: 1D modelling of curvilinear free surface flow: generalized Matthew theory. J. Hydraul. Res. 52(1), 14–23 (2014)

    Article  Google Scholar 

  • Chow, V.T.: Open-Channel Hydraulics. McGraw-Hill, New York (1959)

    Google Scholar 

  • Dusek, J., Vogel, T.: Modeling subsurface hillsloperunoffdominated by preferential flow: one-vs. two-dimensional approximation. Vadose Zone J. (2014). doi:10.2136/vzj2013.05.0082

  • Gabrielli, C.P., McDonnell, J.J., Jarvis, W.T.: The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales. J. Hydrol. 450–451, 117–133 (2012)

    Article  Google Scholar 

  • Gakhov, F.D.: Boundary Value Problems. Pergamon Press, Oxford (1966)

    Google Scholar 

  • Gassiat, C., Gleeson, T., Lefebvre, R., McKenzie, J.: Hydraulic fracturing in faulted sedimentary basins: numerical simulation of potential contamination of shallow aquifers over long time scales. Water Resour. Res. 49, 8310–8327 (2013). doi:10.1002/2013WR014287

    Article  Google Scholar 

  • George, R.J., Conacher, A.J.: Interactions between perched and saprolite aquifers on a small, salt-affected and deeply weathered hillslope. Earth Surf. Process. Landf. 18, 91–108 (1993)

    Article  Google Scholar 

  • Gradshteyn, I.S., Ryzik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (1980)

    Google Scholar 

  • Hardie, M.A., Doyle, R.B., Cotching, W.E., Lisson, S.: Subsurface lateral flow in texture-contrast (duplex) soils and catchments with shallow bedrock. Appl. Environ. Soil Sci. 2012, 10 (2012). doi:10.1155/2012/861358

    Article  Google Scholar 

  • Harte, P.T., Winter, T.C.: Simulations of flow in crystalline rock and recharge from overlying glacial deposits in a hypothetical New England setting. Groundwater 33(6), 953–964 (1995)

    Article  Google Scholar 

  • Hemker, C.J.: Steady groundwater flow in leaky multiple aquifer systems. J. Hydrol. 72, 355–374 (1984)

    Article  Google Scholar 

  • Iwagami, S., Tsujimura, M., Onda, Y., Shimada, J., Tanaka, T.: Role of bedrock groundwater in the rainfall-runoff process in a small headwater catchment underlain by volcanic rock. Hydrol. Process. 24(19), 2771–2783 (2010). doi:10.1002/hyp.7690

    Article  Google Scholar 

  • Kacimov, A.R., Obnosov, Y.V.: Two-dimensional seepage in porous media with heterogeneities. J. Geochem. Explor. 69–70, 251–255 (2000)

    Article  Google Scholar 

  • Kacimov, A.R.: Three-dimensional groundwater flow to a shallow pond: an explicit solution. J. Hydrol. 337, 200–206 (2007)

    Article  Google Scholar 

  • Kacimov, A.R.: Analytical solution for a phreatic groundwater fall: the Riesenkampf and Numerov solutions revisited. Hydrogeol. J. 20(6), 1203–1209 (2012). doi:10.1007/s10040-012-0857-z

    Article  Google Scholar 

  • Kacimov, A.R., Brown, G.: A transient phreatic surface mound, evidenced by a strip of vegetation in an earth dam shoulder: the Lembke–Youngs reductionist model revisited. Hydrol. Sci. J. 60(2), 361–378 (2015)

    Article  Google Scholar 

  • Kacimov, A.R., Obnosov, Y.V.: Analytical solution to 2D problem for an anticline-diverted brine flow with a floating hydrocarbon trap. Transp. Porous Media 71(1), 39–52 (2008). doi:10.1007/s11242-007-9110-y

    Article  Google Scholar 

  • Kacimov, A.R., Obnosov, Y.V., Abdalla, O., Castro-Orgaz, O.: Groundwater flow in hillslopes: analytical solutions by the theory of holomorphic functions and hydraulic theory. Appl. Math. Modell. 39, 3380–3397 (2015). doi:10.1016/j.apm.2014.11.016

    Article  Google Scholar 

  • Marra, W.A., Braat, L., Baar, A.W., Kleinhans, M.G.: Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars. Icarus 232, 97–117 (2014)

    Article  Google Scholar 

  • Polubarinova-Kochina, P.Y.: Theory of Ground Water Movement. Princeton University Press, Princeton (1962). Second edition of the book in Russian, Nauka, Moscow (1977)

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Read, W.W., Volker, R.E.: Series solutions for steady seepage through hillsides with arbitrary flow boundaries. Water Resour. Res. 29, 2871–2880 (1993)

    Article  Google Scholar 

  • Rushton, K.R., Youngs, E.G.: Drainage of recharge to symmetrically located downstream boundaries with special reference to seepage faces. J. Hydrol. 380, 94–103 (2010)

    Article  Google Scholar 

  • Strack, O.D.L.: Groundwater Mechanics. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Toth, J.: Gravitational Systems of Groundwater Flow-Theory, Evaluation, Utilization. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  • Townley, L.R., Trefry, M.G.: Surface water–groundwater interaction near shallow circular lakes: flow geometry in three dimensions. Water Resour. Res. 36(4), 935–948 (2000)

    Article  Google Scholar 

  • Tromp-van Meerveld, H.J., Peters, N.E., McDonnell, J.J.: Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA. Hydrol. Process. 21, 750–769 (2007)

    Article  Google Scholar 

  • Wang, S., Vafai, K., Mukhopadhyay, S.: Two-phase CO\(_{2}\) migration in tilted aquifers in the presence of groundwater flow. Int. J. Heat Mass Transf. 77, 717–729 (2014)

    Article  Google Scholar 

  • Wolfram, S.: Mathematica. A System for Doing Mathematics by Computer. Addison-Wesley, Redwood City (1991)

    Google Scholar 

  • Youngs, E.G., Rushton, K.R.: Dupuit–Forchheimer analyses of steady-state water table heights due to accretion in drained lands overlaying undulating sloping impermeable beds. J. Irrig. Drain. Eng. ASCE 135(4), 467–473 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by SQU, Grant SR/SCI/ETHS/11/01, Russian Foundation for Basic Research Grant No. 13-01-00322 and through a special program of the Russian Government supporting research at Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Obnosov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obnosov, Y.V., Kacimov, A.R. & Castro-Orgaz, O. Analytical Solutions for Steady Phreatic Flow Appearing/Re-emerging Toward/from a Bedrock/Caprock Isobaric Breach: The Polubarinova-Kochina–Numerov and Pavlovsky Problems Revisited. Transp Porous Med 109, 337–358 (2015). https://doi.org/10.1007/s11242-015-0522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0522-9

Keywords

Navigation