Skip to main content
Log in

Oscillating Convection of Nanofluid in Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, oscillatory convection in a horizontal layer of nanofluid in porous medium is studied. For porous medium, Darcy model is applied. A linear stability theory and normal mode analysis method is used to find the solution confined between two free boundaries. The onset criterion for oscillatory convection is derived analytically and graphically. Regimes of oscillatory and non-oscillatory convection for various parameters are derived. The effects of Lewis number, concentration Rayleigh number, Prandtl–Darcy number (Vadasz Number) and modified diffusivity ratio on the oscillatory convection are investigated graphically. We examine the validity of ‘PES’ and concluded that ‘PES’ is not valid for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

Wave number

D B :

Diffusion coefficient (m 2/s)

D T :

Thermophoretic diffusion coefficient

Da :

Darcy number

g :

Acceleration due to gravity (m/s 2)

j :

Mass flux (kg/m 2 s)

k 1 :

Medium permeability

k m :

Thermal conductivity (w/mK)

k B :

Boltzmann constant (j/K)

L e :

Lewis number

n :

Growth rate of disturbances

N A :

Modify diffusivity ratio

N B :

Modify particle-density increment

p :

Pressure (Pa)

p′:

Pressure

P r :

Prandtl number

q :

Darcy velocity vector (m/s)

R a :

Rayleigh–Darcy number

\({R_{a_{\rm c}}}\) :

Critical Rayleigh–Darcy number

R m :

Density Rayleigh number

R n :

Concentration Rayleigh number

t :

Time (s)

t′:

Time

T :

Temperature (K)

T′:

Temperature

Va :

Prandtl–Darcy number (Vadasz number)

u,v,w :

Velocity components

x, y, z :

Space co-ordinates (m)

x′, y′, z′:

Space co-ordinates

α :

Thermal expansion coefficient (1/K)

μ :

Viscosity

ε :

Porosity

ρ :

Density of the nanofluid(kg/m 3)

(ρc)m :

Heat capacity in porous medium

(ρc)p :

Heat capacity of nanoparticles

φ :

Volume fraction of the nanoparticles

ρ p :

Density of nanoparticles

ρ f :

Density of base fluid

κ :

Thermal diffusivity

ω :

Dimensional frequency

′:

Non dimensional variables

′′:

Perturbed quantity

p:

Particle

f:

Fluid

0:

Lower boundary

1:

Upper boundary

H:

Horizontal plane

References

  • Alloui, Z., Vasseur, P., Reggio, M.: Natural convection of nanofluids in a shallow cavity heated from below. Int. J. Therm. Sci. online xxx, 1–9 (2010)

  • Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Trans. 128, 240–250 (2006)

    Article  Google Scholar 

  • Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Dover Publications, New York (1961)

    Google Scholar 

  • Choi S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds) Developments and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol. 66., pp. 99–105. ASME, New York (1995)

    Google Scholar 

  • Dhananjay, Agrawal G.S., Bhargava R.: Rayleigh Bé nard convection in nanofluid. Int. J. Appl. Math. Mech. 7(2), 61–76 (2010)

    Google Scholar 

  • Ingham D.D., Pop L.: Transport Phenomena in Porous Media. Elsvier, New York (1981)

    Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 83, 425–436 (2010a)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model. Trans. Porous Medium 81, 409–422 (2010b)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Trans. Porous Media 85(3), 941–951 (2010c)

    Article  Google Scholar 

  • Lapwood E.R.: Convection of a fluid in porous medium. Proc. Camb. Philos. Soc. 44, 508–519 (1948)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Medium. Springer, New York (2006)

    Google Scholar 

  • Nield D.A., Kuznetsov A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Trans. 52, 5796–5801 (2009)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B/Fluids 29, 217–223 (2010a)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The onset of convection in a layer of cellular porous material: effect of temperature-dependent conductivity arising from radiative transfer. J. Heat Trans. 132(7), 074503–074504 (2010b)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The onset of double-diffusive convection in a nanofluid layer. Int. J. Heat Fluid Flow 32, 771–776 (2011a)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The effect of vertical through flow on thermal instability in a porous medium layer saturated by a nanofluid. Trans. Porous Media 87, 765–775 (2011b)

    Article  Google Scholar 

  • Sheu L.J.: Linear stability of convection in a in a visco elastic nanofluid layer. World Acad. Sci. Eng. Technol. 58, 289–295 (2011)

    Google Scholar 

  • Tzou D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Trans. 51, 2967–2979 (2008a)

    Article  Google Scholar 

  • Tzou D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Trans. 130, 372–401 (2008b)

    Article  Google Scholar 

  • Vadasz P.: Heat conduction in nanofluid suspensions. ASME J. Heat Trans. 128, 465–477 (2006)

    Article  Google Scholar 

  • Vafai K.A., Hadim H.A.: Hand Book of Porous Media. M. Decker, New York (2000)

    Book  Google Scholar 

  • Wooding R.A.: Rayleigh instability of a thermal boundary layer in flow through a porous medium. J. Fluid Mech. 9, 183–192 (1960)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chand, R., Rana, G.C. Oscillating Convection of Nanofluid in Porous Medium. Transp Porous Med 95, 269–284 (2012). https://doi.org/10.1007/s11242-012-0042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0042-9

Keywords

Navigation