Skip to main content
Log in

Analysis of Hydraulic Permeability in Porous Media: From High Resolution X-ray Tomography to Direct Numerical Simulation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The development and application of a strategy are presented, for estimating the full tensor of hydraulic permeability of porous media, without any a priori assumption on the principal directions. A comprehensive description of the X-ray tomographic and image analysis techniques is drawn for the quantitative morphological characterization of the pore space. Pore-scale Direct Numerical Simulation is used to compute the velocity and pressure fields in the digital pore space, reconstructed from high-resolution X-ray tomography. A commercial Finite Volume fluid dynamic solver is used, which operates on voxel-based computational meshes. The proposed methodology is validated by reproducing literature results on monodisperse periodic arrays of spheres. The hydraulic permeability of real-life porous media, characterized by highly complex morphology, is compared with laboratory experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya R.C., Van Der Zee S.E.A.T.M, Leijnse A.: Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media. Adv. Water Res. 27, 707–723 (2004)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Dover Publ. Inc., New York (1972)

    Google Scholar 

  • Bentz D.P., Martys, N.S.: A Stokes permeability solver for three dimensional porous media, NIST, Internal Report 7416 (2007)

  • Beskok A., Karniadakis G.E.: Rarefaction and compressibility effects in gas microflows. J. Fluids Eng. 118(3), 448–456 (1996)

    Article  Google Scholar 

  • Carman P.C.: Fluid flow through a granular bed. Trans. Inst. Chem. Eng. London 15, 150–156 (1937)

    Google Scholar 

  • Carman P.Z.: Flow of Gases through Porous Media. Butterworths, London (1956)

    Google Scholar 

  • Chatzigeorgiou G., Picandet V., Khelidj A., Pijaudier-Cabot G.: Coupling between progressive damage and permeability of concrete: analysis with a discrete model. Int. J. Numer. Anal. Methods Geomech. 29(10), 1005–1018 (2005)

    Article  Google Scholar 

  • Chun, B., Ladd, A.J.C.: Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys. Rev. E: Stat. Phys., Plasmas, Fluids. 75 (2007)

  • Cohen L.D., Kimmel R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vision. 24(1), 235 (1997)

    Article  Google Scholar 

  • Coles M. E., Hazlett R.D., Spanne P., Soll W.E., Muegge E.L., Jones K.W.: Pore level imaging of fluid transport using synchrotron X-ray microtomography. J. Pet. Sci. Technol. 19(1–2), 55–63 (1998)

    Article  Google Scholar 

  • Feldkamp L.A., Davis L.C., Kreiss J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A. 1, 612–619 (1984)

    Article  Google Scholar 

  • Ferziger J.H., Peric M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)

    Google Scholar 

  • Filippova O., Hanel D.: Grid refinement for Lattice-BGK models. J. Comp. Phys. 147(1), 219–228 (1998)

    Article  Google Scholar 

  • Fourie, W., Said, R., Young, P. Barnes, D.L.: The Simulation of Pore Scale Fluid Flow with Real World Geometries Obtained from X-Ray Computed Tomography. In: 2007 COMSOL Conference (2007)

  • Fried, E., Idelchik, I.E.: Flow Resistance: A Design Guide for Engineers. Hemisphere Pub. Corp (1989)

  • Hilfer R.: Review on scale dependent characterization of the microstructure of porous media. Transp. Porous Media. 46, 373–390 (2002)

    Article  Google Scholar 

  • Humby S., Biggs M.J., Tuzun U.: Explicit numerical simulation of fluids in reconstructed porous media. Chem. Eng. Sci. 57, 1955–1968 (2002)

    Article  Google Scholar 

  • Jin, G., Patzek, T.W., Silin, D.B.: Direct prediction of absolute permeability of unconsolidated and consolidated reservoir rock. SPE 90086, SPE Annual conference Houston (TX) (2004)

  • Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia (2001)

  • Kanita T., Forest S., Gallieta I., Mounourya V., Jeulina D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  Google Scholar 

  • Kimmel R., Sethian J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA. 95, 8431–8435 (1998)

    Article  Google Scholar 

  • Kirkpatrick S.: Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973)

    Article  Google Scholar 

  • Leonard B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19, 59–98 (1979)

    Article  Google Scholar 

  • Lindquist, W.B.: 3DMA-Rock: a software package for automated analysis of rock pore structure in 3-D computed microtomography images, http://www.ams.sunysb.edu/lindquis/3dma/3dma.html (2005)

  • Manwart C., Aaltosalmi U., Koponen A., Hilfer R., Timoten J.: Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Phys. Rev. E. 66, 016,702.1–016,702.11 (2002)

    Article  Google Scholar 

  • Martin J.J., McCabe W.L., Monrad C.C.: Pressure drop through stacked spheres—effect of orientation. Chem. Eng. Prog. 47, 91 (1951)

    Google Scholar 

  • Nordlund M., Lundström T.S.: Effect of multi-scale porosity in local permeability modelling of non-crimp fabrics. Transp. Porous Media. 73, 109–124 (2008)

    Article  Google Scholar 

  • Ollivier-Gooch C., Van Altena M.: A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation. J. Comput. Phys. 181, 729–752 (2002)

    Article  Google Scholar 

  • Olver P.J., Shakiban C.: Applied Linear Algebra. Pearson Prentice Hall, Upper Saddle River, NJ (2006)

    Google Scholar 

  • Pan C., Hilpert M., Miller C.T.: Pore-scale modeling of saturated permeabilities in random sphere packings. Phys. Rev. E: Stat. Phys., Plasmas, Fluids. 64 (2001)

  • Patzek T.W., Silin D.B.: Shape factor and hydraulic conductance in Noncircular capillaries. J. Colloid Interface Sci. 236, 295–304 (2001)

    Article  Google Scholar 

  • Prodanovic, M.: Fluid displacement in Rockbib:Carman-1937 cores: a study based on three dimensional X-ray microtomography images. PhD thesis, Stony Brook University (2005)

  • Rumpf H., Gupte A.R.: Einflusse der Porositat und Korngroshenverteilung im Widerstandsgesetz der Porenstromung. Chem. Ing. Tech. 43, 367 (1971)

    Article  Google Scholar 

  • Schena G., Favretto S.: Pore space network characterization with sub-voxel definition. Transp. Porous Media. 70(2), 181–190 (2007)

    Article  Google Scholar 

  • Schena, G., Favretto, S., Piller, M., Radaelli, F., Rossi, E.: Pore Space Characterisation and Permeability Prediction Using Fast Network Extraction and Pore Throat Conductance Calculation. In: Europec/EAGE Conference and Exhibition. Rome, Italy, June (2008)

  • Sisavath S., Xudong J., Zimmerman R.: Laminar flow through irregularly shaped pores in sedimentary rocks. Transp. Porous Media. 45(1), 41–62 (2001)

    Article  Google Scholar 

  • Song Y.S., Chung K., Kang T.J., Youn J.R.: Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell. Compos. Sci. Technol. 64, 1629–1636 (2004)

    Article  Google Scholar 

  • Sorensen J.P., Stewart W.E.: Computation of forced convection in slow flow through ducts and packed beds. II. Velocity profile in a simple cubic array of spheres. Chem. Eng. Sci. 29, 819 (1974)

    Article  Google Scholar 

  • Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Series Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2001)

  • Withaker S.: The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht, The Netherlands (1999)

    Google Scholar 

  • Zick S., Homsy G.M.: Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 13–26 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Piller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piller, M., Schena, G., Nolich, M. et al. Analysis of Hydraulic Permeability in Porous Media: From High Resolution X-ray Tomography to Direct Numerical Simulation. Transp Porous Med 80, 57–78 (2009). https://doi.org/10.1007/s11242-009-9338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9338-9

Keywords

Navigation