Skip to main content

Advertisement

Log in

Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Argan (Argania spinosa (L.) Skeels) is an endangered and endemic agroforestry species of Morocco highly appreciated for its nutraceutical properties. Herein, the antioxidant activity, total phenolic content and fatty acids were evaluated in different extracts obtained from callus culture, seeds and leaves of four argan genotypes: G25, G36, G41 and G84. Callus induction, proliferation and morphology varied depending on genotype and explant type. The highest callus induction rate (97.5%) was observed in the cotyledon explants of genotype G84. The radical scavenging activity values ranged from 76.5 to 98.1%. The essential oils extracted from calli induced from seedling-derived leaves exhibited a slightly higher radical scavenging activity (91.7%) than those extracted from field-grown leaves (90–91.1%). The total phenolic content ranged from 0.72 mg/g dry weight gallic acid equivalent in the methanolic extracts of G84 callus obtained from seedling-derived leaves to 198.26 mg/g dry weight gallic acid equivalent in the essential oils of G84 seeds. The fatty acid composition varied significantly among the different samples. The essential oils extracted from seeds and callus obtained from cotyledon explants have high contents in oleic and linoleic acids (26–37.9% and 25–36.8%, respectively), while the major fatty acid found in the essential oils of leaves and callus obtained from seedling-derived leaves was eicosenoic acid (18.8–45.4%). The present study showed that argan callus culture could be envisaged for sustainable and continuous production of bioactive compounds, and that each extract analyzed had unique and distinct characteristics.

Key message

The essential oils and other extracts obtained from argan callus induced in vitro were characterized and were compared with those obtained from seeds and field-grown leaves

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, Ishtiaq A, Hussain S, Suleria HAR (2017) Natural polyphenols: an overview. Int J Food Prop 20:1689–1699

    Article  CAS  Google Scholar 

  • Amarowicz R, Barl B, Pegg RB (1999) Potential natural antioxidants from Saskatchewan indigenous plants. J Food Lipids 6:317–329

    Article  Google Scholar 

  • Akashi R, Hashimoto A, Adachi T (1993) Plant regeneration from seed-derived embryogenic callus and cell suspension cultures of bahiagrass (Paspalum notatum). Plant Sci 90:73–80

    Article  CAS  Google Scholar 

  • Ben Mansour R, Ben Slema H, Falleh H, Tounsi M, Kechebar MSA, Ksouri R, Megdiche-Ksouri W (2018) Phytochemical characteristics, antioxidant, and health properties of roasted and unroasted Algerian argan (Argania spinosa) oil. J Food Biochem 42:e12562

    Article  CAS  Google Scholar 

  • Bennani H, Drissi A, Giton F, Kheuang L, Fiet J, Adlouni A (2007) Antiprofilative effect of polyphenols and sterols of virgin argan oil on human prostate cancer cell lines. Cancer Detect Prev 31:64–69

    Article  CAS  PubMed  Google Scholar 

  • Bernabé-Antonio A, Álvarez L, Salcedo-Pérez E, Toral FALD, Anzaldo-Hernández J, Cruz-Sosa F (2015) Fatty acid profile of intact plants of two different sites and callus cultures derived from seed and leaf explants of Calophyllum brasiliense Cambess: a new resource of non-edible oil. Ind Crop Prod 77:1014–1019

    Article  CAS  Google Scholar 

  • Berrougui H, Cloutier M, Isabelle M, Khalil A (2006) Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages. Atherosclerosis 184:389–396

    Article  CAS  PubMed  Google Scholar 

  • Cayuela JA, Rada M, Pérez-Camino MC, Benaissa M, Abdelaziz E, Guinda Á (2008) Characterization of artisanally and semiautomatically extracted argan oils from Morocco. Eur J Lipid Sci Technol 110:1159–1166

    Article  CAS  Google Scholar 

  • Chahardehi AM, Ibrahim D, Sulaiman SF (2009) Antioxidant activity and total phenolic content of some medicinal plants in Urticaceae family. J Appl Biol Sci 2:27–31

    Google Scholar 

  • Chanudom L, Bhoopong P, Khwanchuea R, Tangpong J (2014) Antioxidant and antimicrobial activities of aqueous & ethanol crude extracts of 13 Thai traditional plants. Int J Curr Microbial Appl Sci 3:549–558

    Google Scholar 

  • Charrouf Z, Guillaume D (1999) Ethnoeconomical, ethnomedical and phytochemical study of Argania spinosa (L.) Skeels. J Ethnopharmacol 67:7–14

    Article  CAS  PubMed  Google Scholar 

  • Charrouf Z, Guillaume D (2008) Argan oil: occurrence, composition and impact on human health. Eur J Lipid Sci Technol 110:632–636

    Article  CAS  Google Scholar 

  • Dakiche H, Khali M, Abu-el-Haija AK, Al-Maaytah A, Al-Balas QA (2016) Biological activities and phenolic contents of Argania spinosa L (Sapotaceae) leaf extract. Trop J Pharm Res 15:2563–2570

    Article  CAS  Google Scholar 

  • Dakiche H, Khali M, Boutoumi H (2017) Phytochemical characterization and in vivo anti-inflammatory and wound-healing activities of Argania spinosa (L.) Skeels seed oil. Rec Nat Prod 11:171–184

    CAS  Google Scholar 

  • De Martino L, De Feo V, Fratianni F, Nazzaro F (2009) Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat Prod Commun 4:1741–1750

    PubMed  Google Scholar 

  • Dykes GA, Amarowicz R, Pegg RB (2003) Enhancement of nisin antibacterial activity by a bearberry (Arctostaphylos uva-ursi) leaf extract. Food Microb 20:211–216

    Article  CAS  Google Scholar 

  • El Adib S, Aissi O, Charrouf Z, Ben Jeddi F, Messaoud C (2015) Argania spinosa var. mutica and var. apiculata: variation of fatty-acid composition, phenolic content, and antioxidant and α-amylase-inhibitory activities among varieties, organs, and development stages. Chem Biodivers 12:1322–1338

    Article  CAS  PubMed  Google Scholar 

  • El Kabouss A, Charrouf Z, Faid M, Garneau FX, Collin G (2002) Chemical composition and antimicrobial activity of the leaf essential oil of Argania spinosa L. Skeels. J Essent Oil Res 14:147–149

    Article  Google Scholar 

  • El Kharrassi Y, Maata N, Mazri MA, El Kamouni S, Talbi M, El Kebbaj R, Moustaid K, Essamadi AK, Andreoletti P, El Mzouri EH, Cherkaoui-Malki M, Nasser B (2018) Chemical and phytochemical characterizations of argan oil (Argania spinosa L. skeels), olive oil (Olea europaea L. cv. Moroccan picholine), cactus pear (Opuntia megacantha salm-dyck) seed oil and cactus cladode essential oil. J Food Meas Char 12:747–754

    Article  Google Scholar 

  • El Monfalouti H, Charrouf Z, Belviso S, Ghirardello D, Scursatone B, Guillaume D, Denhez C, Zeppa G (2012) Analysis and antioxidant capacity of the phenolic compounds from argan fruit (Argania spinosa (L.) Skeels). Eur J Lipid Sci Technol 114:446–452

    Article  CAS  Google Scholar 

  • Falasca SL, Pitta-Alvarez S, Ulberich A (2018) The potential growing areas for Argania spinosa (L.) Skeels (Sapotaceae) in Argentinean drylands. Int J Agron. https://doi.org/10.1155/2018/9262659

  • Fauser JK, Prisciandaro LD, Cummins AG, Howarth GS (2011) Fatty acids as potential adjunctive colorectal chemotherapeutic agents. Cancer Biol Ther 11:724–731

    Article  CAS  PubMed  Google Scholar 

  • Flamini G, Cioni PL, Morelli I, Macchia M, Ceccarini L (2002) Main agronomic-productive characteristics of two ecotypes of Rosmarinus officinalis L. and chemical composition of their essential oils. J Agric Food Chem 50:3512–3517

    Article  CAS  PubMed  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • Guillaume D, Pioch D, Charrouf Z (2019) Argan [Argania spinosa (L.) Skeels] oil. In: Ramadan MF (ed) Fruit oils: chemistry and functionality. Springer, Cham, pp 317–352

    Chapter  Google Scholar 

  • Guinda A, Rada M, Delgado T, Castellano JM (2011) Pentacyclic triterpenic acids from Argania spinosa. Eur J Lipid Sci Technol 113:231–237

    Article  CAS  Google Scholar 

  • Haloui I, Meniai AH (2017) Supercritical CO2 extraction of essential oil from Algerian Argan (Argania spinosa L.) seeds and yield optimization. Int J Hydrogen Energy 42:12912–12919

    Article  CAS  Google Scholar 

  • Harhar H, Gharby S, Ghanmi M, El Monfalouti H, Guillaume D, Charrouf Z (2010) Composition of the essential oil of Argania spinosa (Sapotaceae) fruit pulp. Nat Prod Commun 5:935–936

    CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Henry GE, Momin RA, Nair MG, Dewitt DL (2002) Antioxidant and cyclooxygenase activities of fatty acid found in food. J Agric Food Chem 50:2231–2234

    Article  CAS  PubMed  Google Scholar 

  • Hernandez LR, Mendiola MAR, Castro CA, Gutierrez-Miceli FA (2015) Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. Callus culture. J Oleo Sci 64:325–330

    Article  CAS  PubMed  Google Scholar 

  • Ibarguren M, López DJ, Escribá PV (2014) The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim Biophys Acta 1838:1518–1528

    Article  CAS  PubMed  Google Scholar 

  • Innis SM (2007) Fatty acids and early human development. Early Hum Dev 83:761–766

    Article  CAS  PubMed  Google Scholar 

  • Ismail A, Marjan ZM, Foong CW (2004) Total antioxidant activity and phenolic content in selected vegetables. Food Chem 87:581–586

    Article  CAS  Google Scholar 

  • Jawdat D, Al-Faoury H, Odeh A, Al-Rayan R, Al-Safadi B (2016) Essential oil profiling in callus of some wild and cultivated Daucus genotypes. Ind Crop Prod 94:848–855

    Article  CAS  Google Scholar 

  • Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Brasi Fisio Vegl 13:196–223

    Article  Google Scholar 

  • Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  CAS  PubMed  Google Scholar 

  • Khallouki F, Younos C, Soulimani R, Oster T, Charrouf Z, Spiegelhalder B, Bartsch H, Owen RW (2003) Consumption of argan oil (Morocco) with its unique profile of fatty acids, tocopherols, squalene, sterols and phenolic compounds should confer valuable cancer chemopreventive effects. Eur J Cancer Prev 12:67–75

    Article  CAS  PubMed  Google Scholar 

  • Kim YC (2010) Neuroprotective phenolics in medicinal plants. Arch Pharm Res 33:1611–1632

    Article  CAS  PubMed  Google Scholar 

  • Koufan M, Belkoura I, Alaoui T (2018) The multiplication of the argane tree by microcutting (Argania spinosa L. Skeels). Eur J Biotechnol Biosci 6:47–52

    Google Scholar 

  • Lamaoui M, Aissam S, Wahbi S, Chakhchar A, Ferradous A, El Moousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2015) Anti-oxidant activity in Argania spinosa callus selected under water stress conditions. J Hortic Sci Biotechnol 90:127–134

    Article  CAS  Google Scholar 

  • Lamaoui M, Chakhchar A, Benlaouane R, El Kharrassi Y, Farissi M, Wahbi S, El Modafar C (2019) Uprising the antioxidant power of Argania spinosa L. callus through abiotic elicitation. Comptes Rendus Biol 342:7–17

    Article  Google Scholar 

  • Lin KH, Shih MC, Wang P, Yu YP, Lu CP (2018) Effect of different ethanolic concentrations on antioxidant properties and cytoprotective activities of Platostoma palustre Blume. Nat Prod Res 32:2959–2963

    Article  CAS  PubMed  Google Scholar 

  • Lybbert TJ, Aboudrare A, Chaloud D, Magnan N, Nash M (2011) Booming markets for Moroccan argan oil appear to benefit some rural households while threatening the endemic argan forest. Proc Natl Acad Sci 108:13963–13968

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuda Y, Adachi T (1996) Plant regeneration via embryogenesis in commercial cultivars of Chinese chive (Allium tuberosum Rottl.). Plant Sci 119:149–156

    Article  CAS  Google Scholar 

  • Mazri MA, Belkoura I, Pliego-Alfaro F, Belkoura M (2012) Embryogenic capacity of embryo-derived explants from different olive cultivars. Acta Hortic 929:397–403

    Article  Google Scholar 

  • Mazri MA, Belkoura I, Meziani R, Mokhless B, Nour S (2017) Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. Najda . 3 Biotech 7:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayouf N, Charef N, Saoudi S, Baghiani A, Khennouf S, Arrar L (2019) Antioxidant and anti-inflammatory effect of Asphodelus microcarpus methanolic extracts. J Ethnopharmacol 239:111914

    Article  CAS  PubMed  Google Scholar 

  • Metougui ML, Mokhtari M, Maughan PJ, Jellen EN, Benlhabib O (2017) Morphological variability, heritability and correlation studies within an argan tree population (Argania spinosa (L.) Skeels) preserved in situ. Int J Agric For 7:42–51

    Google Scholar 

  • Meziani R, Mazri MA, Essarioui A, Alem C, Diria G, Gaboun F, El Idrissy H, Laaguidi M, Jaiti F (2019) Towards a new approach of controlling endophytic bacteria associated with date palm explants using essential oils, aqueous and methanolic extracts from medicinal and aromatic plants. Plant Cell Tissue Organ Cult 137:285–295

    Article  CAS  Google Scholar 

  • Morales FJ, Jiménez-Pérez S (2001) Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem 72:119–125

    Article  CAS  Google Scholar 

  • Moukrim S, Lahssini S, Rhazi M, Mharzi Alaoui H, Benabou A, Wahby I, El Madihi M, Arahou M, Rhazi L (2019) Climate change impacts on potential distribution of multipurpose agro-forestry species: Argania spinosa (L.) Skeels as case study. Agrofor Syst 93:1209–1219

    Article  Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Planta 15:473–479

    Article  CAS  Google Scholar 

  • Öntaş C, Baba E, Kaplaner E, Küçükaydin S, Öztürk M, Ercan MD (2016) Antibacterial activity of citrus limon peel essential oil and Argania spinosa oil against fish pathogenic bacteria. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 22:741–749

    Google Scholar 

  • Pandey G, Gupta SS, Bhatia A, Sidhu OP, Rawat AKS, Rao CV (2017) Grilling enhances antidiarrheal activity of Terminalia bellerica Roxb. fruits. J Ethnopharmacol 202:63–66

    Article  CAS  PubMed  Google Scholar 

  • Razavizadeh R, Komatsu S (2018) Changes in essential oil and physiological parameters of callus and seedlings of Carum copticum L. under in vitro drought stress. J Food Meas Char 12:1581–1592

    Article  Google Scholar 

  • Robles-Martínez M, Barba-de la Rosa AP, Guéraud F, Negre-Salvayre A, Rossignol M, Santos-Díaz MS (2016) Establishment of callus and cell suspensions of wild and domesticated Opuntia species: study on their potential as a source of metabolite production. Plant Cell Tissue Organ Cult 124:181–189

    Article  CAS  Google Scholar 

  • Rojas LB, Quideau S, Pardon P, Charrouf Z (2005) Colorimetric evaluation of phenolic content and GC-MS characterization of phenolic composition of alimentary and cosmetic argan oil and press cake. J Agric Food Chem 53:9122–9127

    Article  CAS  PubMed  Google Scholar 

  • Rustan AC, Drevon CA (2005) Fatty acids: structures and properties. In: Encyclopedia of life sciences. Wiley, Hoboken, pp 1–7

  • Samane S, Noël J, Charrouf Z, Amarouch H, Haddad PS (2006) Insulin-sensitizing and anti-proliferative effects of Argania spinosa seed extracts. eCAM 3:317–327

    PubMed  PubMed Central  Google Scholar 

  • Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81(suppl):215S-217S

    Article  CAS  PubMed  Google Scholar 

  • Seiquer I, Rueda A, Olalla M, Cabrera-Vique C (2015) Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil. Food Chem 188:496–503

    Article  CAS  PubMed  Google Scholar 

  • Šerhantová V, Ehrenbergerová J, Ohnoutková L (2004) Callus induction and regeneration efficiency of spring barley cultivars registered in the Czech Republic. Plant Soil Environ 50:456–462

    Article  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 22:1019

    Google Scholar 

  • Takahashi W, Komatsu T, Fujimori M, Takamizo T (2004) Screening of regenerable genotypes of Italian ryegrass (Lolium multiflorum Lam.). Plant Prod Sci 7:55–61

    Article  Google Scholar 

  • Vergis J, Gokulakrishnan P, Agarwal RK, Kuamr A (2013) Essential oils as natural food antimicrobial agents: a review. Crit Rev Food Sci Nutr 55:1320–1323

    Article  CAS  Google Scholar 

  • Wang DC, Sun CH, Liu LY, Sun XH, Jin XW, Song WL, Liu XQ, Wan XL (2012) Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer’s disease. Neurobiol Aging 33:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Yesil-Celiktas O, Nartop P, Gurel A, Bedir E, Vardar-Sukan F (2007) Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis’ calli. J Plant Physiol 164:1536–1542

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MK, IB and MAM conceived the idea and designed research. MK, MAM, AE, HE performed in vitro germination and callus induction experiments. MK, AA and FZ prepared and analyzed argan extracts and essential oils. MK and MAM wrote the manuscript. MAM performed statistical analysis. IB and TA supervised experiments and corrected the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Meriyem Koufan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Konstantin V. Kiselev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koufan, M., Belkoura, I., Mazri, M.A. et al. Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels. Plant Cell Tiss Organ Cult 141, 217–227 (2020). https://doi.org/10.1007/s11240-020-01782-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01782-w

Keywords

Navigation