Skip to main content
Log in

Temporal variations in metabolite profiles at different growth phases during somatic embryogenesis of Silybum marianum L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Silybum marianum, commonly known as Milk thistle, is a popular herbal supplement used for the treatment of jaundice and liver cirrhosis worldwide. Here we established methods for somatic embryogenesis and comparative metabolite profiling of the different growth phases during embryogenesis in S. marianum. Highest embryogenic potential was observed for calli previously derived from petiole explants on Schenk and Hildebrandt medium containing 2.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 N6-benzyladenine (BA). Somatic embryos (SE) were induced when embryogenic calli with pre-embryoid masses (PEMs) were subcultured on same media as used for induction of embryogenic callus. Highest number of somatic embryos (46 somatic embryo per callus) was observed at 1.5 mg l−1 2,4-D and 1.5 mg l−1 BA, however ½ strength MS medium showed optimal response for maturation followed by germination of somatic embryos at 1.5 mg l−1 GA3. Metabolite profiles from developmental stages of non-embryogenic callus (NEC), PEMs, SE and embryos germinating into intact plantlets (GSE) were obtained using Electro spray ionization mass spectrometry ESI/MS. Principal component analysis (PCA) was carried out to identify key metabolites in different growth phases during somatic embryogenesis. The loading scatter plots enabled the detection of several bin masses responsible for separating samples from different growth stages. Based on the values of % total ions count and average intensity of selected bins in all biological samples, putatively known metabolites were obtained from in-house bin program. Amino acids associated with various biosynthetic pathways like arginine, asparagine and serine were abundantly detected in GSE, while they were detected at decreased intensities in NEC. However, tryptophan was measured with increased signals in SE when compared to other growth phases. Glucose, fructose and fructose-6-phosphate were mostly accumulated in NEC; however they were detected with lowest intensities in GSE. Moreover, sucrose and significant secondary metabolites like cinnamic acid, kaempferol, quercetin, myricetin, linolenic acid, and 5-enolpyruvyl-shikimate-3-phosphate were found at higher amount in SE when compared to other embryogenic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SH:

Schenk and Hildebrandt

MS:

Murashige and Skoog

PGR:

Plant growth regulator

SE:

Somatic embryo

NEC:

Non-embryogenic callus

PAL:

Phenylalanine ammonia lyase

FRSA:

Free radical scavenging activity

ESI:

Electro spray ionization

PCA:

Principal component analysis

References

  • Abbasi BH, Khan MA, Mahmood T, Ahmad M, Chaudhary MF, Khan MA (2010) Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tissue Organ Cult 101:371–376

    Article  CAS  Google Scholar 

  • Azzi A, Davies KJA, Kelly F (2004) Free radical biology- terminology and critical thinking. FEBS Lett 558:3–6

    Article  CAS  PubMed  Google Scholar 

  • Baskaran P, Staden JV (2012) Somatic embryogenesis of Merwilla plumbea (Lindl.) Speta. Plant Cell Tissue Organ Cult 109:517–524

  • Bolwell GP, Bell JN, Cramer CL, Schuch W, Lamb CJ, Dixon RA (1985) L-Phenylalanine ammonia-lyase from Phaseolus vulgaris: characterization and differential induction of multiple forms from elicitor-treated cell suspension cultures. Eur J Biochem 149:411–419

    Article  CAS  PubMed  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21

    Article  CAS  Google Scholar 

  • Businge E, Brackmann K, Moritz T, Egertsdotter U (2012) Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiol 32:232–244

    Article  CAS  PubMed  Google Scholar 

  • Cangahuala IGC, Dal VLL, Steinmacher D, Torres AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Burret): induction, conversion and synthetic seeds. Sci Horti 111:228–234

    Article  Google Scholar 

  • Canovas FM, Avila C, Canton FR, Canas RA, Dela TF (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58:2307–2318

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378

    Article  CAS  Google Scholar 

  • Correa CM, Oliveira GND, Astarita LV, Santarem ER (2009) Plant regeneration through somatic embryogenesis of Yacon [Smallanthus sonchifolius (Peopp. And Endl.) H. Robinson]. Braz Arch Biol Technol 52:549–554

    Article  CAS  Google Scholar 

  • Correia S, Cunha AE, Salgueiro L, Canhoto JM (2012) Somatic embryogenesis in tamarillo (Cyphomandra betacea): approaches to increase efficiency of embryo formation and plant development. Plant Cell Tissue Organ Cult 109:143–152

    Article  CAS  Google Scholar 

  • Dai JL, Tan X, Zhan YG, Zhang YQ, Xiao S, Gao Y, Xu DW, Wang T, Wang XC, You XL (2011) Rapid and repetitive plant regeneration of Aralia elata seem via somatic embryogenesis. Plant Cell Tissue Organ Cult 104:125–130

    Article  Google Scholar 

  • Davey MP, Burrell MM, Woodward FI (2008) Population specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. New Phytol 177:380–388

    CAS  PubMed  Google Scholar 

  • Dunn WB, Overy S, Quick WP (2005) Evaluation of automated electrospray-TOF mass spectrometry for metabolic fingerprinting of the plant metabolome. Metabolomics 1(2):137–148

    Article  CAS  Google Scholar 

  • Firoozabady E, Moy Y (2004) Regeneration of pineapple via somatic embryogenesis and organogenesis. In Vitro Cell Dev Biol Plant 42:525–533

    Google Scholar 

  • Gerdakaneh M, Zohori M (2013) The effect of Picloram on somatic embryogenesis of different explants of strawberry (Fragaria ananassa Duch.). Brit Biotechnol J 2(2):133–142

    Article  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  CAS  PubMed  Google Scholar 

  • Haban M, Otepka P, Kobida L, Habanova M (2009) Production and quality of milk thistle (Silybum marianum L) cultivated in cultural conditions of warm agri-climatic macroregion. Hort Sci 36:25–30

    Google Scholar 

  • Helmersson A, Arnold SV, Burg K, Bozhkov P (2004) High stability of nuclear microsatellite loci during early stages of somatic embryogenesis in Norway spruce. Tree Physiol 24:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Jeyaseelan M, Rao MV (2005) Biochemical studies of embryogenic and non-embryogenic callus of Cardiospermum halicacabum L. Ind J Exp Biol 43:555–560

    CAS  Google Scholar 

  • Jones DH (1984) Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochem 23:1349–1359

    Article  CAS  Google Scholar 

  • Khan MA, Abbasi BH, Ahmed N, Ali H (2013) Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod 46:105–110

    Article  CAS  Google Scholar 

  • Khan MA, Abbasi BH, Shinwari ZK (2014) Thidiazuron enhanced regeneration and silymarin content in Silybum marianum L. Pak J Bot 46:185–190

    Google Scholar 

  • Kishor PK (1989) Activities of phenylalanine- and tyrosine- ammonia lyases in callus cultures of rice. Plant Cell Physiol 30:25–29

    CAS  Google Scholar 

  • Koksal E, Gulcin I, Beyza S, Sarikaya O, Bursal E (2009) In vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem 24:395–405

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Attree SM, Fowke LC (1997) Changes of endogenous hormone levels in developing seeds, zygotic embryos and megagametophytes in Picea glauca. Physiol Plant 101:23–30

    Article  CAS  Google Scholar 

  • Kruve A, Kaupmees K, Liigand J, Oss M, Leito I (2013) Sodium adduct formation efficiency in ESI source. J Mass Spectrom 48:695–702

    Article  CAS  PubMed  Google Scholar 

  • Kumar GK, Thomas TD (2012) High frequency somatic embryogenesis and synthetic seed production in Clitoria ternateea Linn. Plant Cell Tissue Organ Cult 110:141–151

    Article  Google Scholar 

  • Lee DY, Liu Y (2003) Molecular structure and stereochemistry of silybin A, silybin B, isosilybin A and isosilybin B, isolated from Silybum marianum (milk thistle). J Nat Prod 66:1171–1174

    Article  CAS  PubMed  Google Scholar 

  • Limem I, Guedon E, Hehn A, Bourgaud F, Ghedira LC, Engasser J-C, Ghoul M (2008) Production of phenylpropanoid compounds by recombinant microorganisms expressing plant-specific biosynthesis genes. Process Biochem 43:463–479

    Article  CAS  Google Scholar 

  • Lipavska H, Konradova H (2004) Somatic embryogenesis in conifers: the role of carbohydrate metabolism. In Vitro Cell Dev Biol Plant 40:23–30

    Article  CAS  Google Scholar 

  • Lulsdorf MM, Tautorus TE, Kikcio SI, Dunstan DI (1992) Growth parameters of embryogenic suspension Culture of interior spruce (Picea glauca-engelmannii complex) and black spruce (Picea mariana mill.). Plant Sci 82:227–234

    Article  CAS  Google Scholar 

  • Michalczuk L, Cooke TJ, Cohen JD (1992) Auxin levels at different stages of carrot embryogenesis. Phytochemistry 31:1097–1103

    Article  CAS  Google Scholar 

  • Minocha R, Minocha SC, Long S (2004) Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell Dev Biol Plant 40:572–580

    Article  CAS  Google Scholar 

  • Moon HK, Kim YW, Hong YP, Park SY (2013) Improvement of somatic embryogenesis and plantlet conversion in Oplopanax elatus, an endangered medicinal woody plant. Springer Plus 2:421–428

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Omar GF, Mohammad FH, Haensch KT, Sarg SH, Morsey MM (2013) Somatic embryo-like structures of strawberry regenerated in vitro on media supplemented with 2,4_D and BAP. Ind J Exp Biol 51:739–745

    CAS  Google Scholar 

  • Onay A (2000) Histology of somatic embryogenesis in cultured leaf explants of Pistachio (Pistachio vera L.). Turk J Bot 24:91–95

    Google Scholar 

  • Overy SA, Walker HJ, Malone S, Howard TP, Baxter CJ, Sweetlove LJ, Hill SA, Quick WP (2005) Application of metabolite profiling to the identification of traits in a population of tomato introgression lines. J Exp Bot 56(410):287–298

    Article  CAS  PubMed  Google Scholar 

  • Pinto G, Park YS, Silva S, Neves L, Araujo C, Santos C (2008) Factors affecting maintenance, proliferation and germination of secondary somatic embryos of Eucalyptus globules Labill. Plant Cell Tissue Organ Cult 95:69–78

    Article  CAS  Google Scholar 

  • Pitt JJ (2009) Principles and applications of liquid chromatography–mass spectrometry in clinical biochemistry. Clin Biochem Rev 30:19–34

    PubMed Central  PubMed  Google Scholar 

  • Prange ANS, Serek M, Bartsch M, Winkelmann T (2010) Efficient and stable regeneration from protoplasts of Cyclamen coum Miller via somatic embryogenesis. Plant Cell Tissue Org Cult 101:171–182

    Article  Google Scholar 

  • Radice S, Caso O (1997) Somatic embryogenesis and organogenesis in cultured cotyledons of Silybum marianum (L) Gaertn. Biocell 21:59–64

    Google Scholar 

  • Ram G, Bhan MK, Gupta KK, Thaker B, Jamwal U, Pal S (2005) Variability pattern and correlation studies in Silybum marianum. Fitoterapia 76:143–147

    Article  CAS  PubMed  Google Scholar 

  • Rathod D, Patel A, Shrimali G, Rami E, Patel C, Panigrahi J, Patel I (2014) Biochemical changes during in vitro organogenesis of Tylophora indica (Burm. F.). Merrill Ind J App Res 4 (1):274–277

  • Robinson AR, Dauwe R, Ukrainetz NK, Cullis IF, White R, Mansfield SD (2009) Predicting the regenerative capacity of conifer somatic embryogenic cultures by metabolomics. Plant Biotechnol J 7:952–963

    Article  CAS  PubMed  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for production and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Siddiqui Z, Mujib A, Maqsood M (2011) Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tissue Organ Cult 104:247–256

    Article  Google Scholar 

  • Singh S, Tanwer BS, Khan M (2011) Callus induction and in vivo and in invitro comparative study of primary metabolites of Withania somnifera. Adv Appl Sci Res 2:47–52

    CAS  Google Scholar 

  • Sivanesan I, Lim MY, jeong BR (2011) Somatic embryogenesis and plant regeneration from leaf and petiole explants of Campanula punctata Lam. Var. rubriflora Makino Plant Cell Tissue Organ Cult 107: 365–369

  • Song HH, Ryu HW, Lee KJ, Jeong Y, Kim DS, Oh SR (2014) Metabolomics investigation of flavonoid synthesis in soybean leaves depending on the growth stage. Metabolomics. doi:10.1007/s11306-014-0640-3

    Google Scholar 

  • Spurr AR (1967) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  Google Scholar 

  • Stuart DA, Nelson J, Strickland SG (1985) Factors affecting developmental processes in alfalfa cell cultures, in Tissue culture in forestry and agricultre, edited by Henke R R, (Plenum Press, New York): 59

  • Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agro Crop Sci 195:165–171

  • Tan SC (1979) Relationships and interactions between phenylalanine ammonia-lyase, phenylalanine ammonia-lyase inactivating system, and anthocyanin in apples. J Am Soc Hort Sci 104:581–586

    CAS  Google Scholar 

  • Walker H (2011) Metabolic profiling of plant tissues by electrospray mass spectrometry. In: de Bruijn FJ (ed.), Handbook of molecular microbial ecology I-Metagenomics and complementary approaches. Hoboken: Wiley. ISBN: 9780470644799

  • Wani M, Pande S, More N (2010) Callus induction studies in Tridax procumbens L. Int J Biotechnol Appl 2:11–14

    Article  Google Scholar 

  • Wu JW, Lin LC, Tsai TH (2009) Drug–drug interactions of silymarin on the perspective of pharmacokinetics. J Ethnol Pharm 121:185–193

    CAS  Google Scholar 

  • Xiangqian L, Sergei FK, Schuyler SK (2002) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J Plant Physiol 159:313–319

    Article  Google Scholar 

  • Zhang N, Fang W, Shi Y, Liu Q, Yang H, Gui R, Lin X (2010) Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii. Plant Cell Tissue Organ Cult 103:325–332

    Article  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support of Higher Education Commission (HEC) of Pakistan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Haider Abbasi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Abbasi, B.H., Ali, H. et al. Temporal variations in metabolite profiles at different growth phases during somatic embryogenesis of Silybum marianum L.. Plant Cell Tiss Organ Cult 120, 127–139 (2015). https://doi.org/10.1007/s11240-014-0587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0587-0

Keywords

Navigation