Skip to main content
Log in

Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The effect of optimal and supra-optimal concentrations (0, 200, 400 or 600 mM) of NaCl on the growth, osmotic adjustment and antioxidant enzyme defence was studied in the in vitro cultures of Sesuvium portulacastrum. A significant increase in growth, tissue water content (TWC) and fresh to dry weight ratio (FW/DW) was observed in the shoots exposed to 200 mM salt. Minimum damage to the membrane in terms of low relative electrolytic leakage (REL) and malondialdehyde (MDA) content and better osmotic adjustment at 200 mM salt stress was coupled with the higher accumulation of sodium ions and total soluble sugars as against low proline and glycine betaine contents. A fine tuning of antioxidant enzyme activities (superoxide dismutase, catalase and ascorbate peroxidase) was also found to be responsible for the optimum growth of shoots. In contrast, sub-optimal (0 mM) and supra-optimal concentrations (400–600 mM) of NaCl significantly affected the growth, water status and increased the REL as well as MDA content of the shoots due to the accumulation of toxic concentrations of saline ions. The highest accumulation of proline and glycine betaine in addition to antioxidant enzyme activities exhibited higher osmotic adjustment and survival of the shoots under sub- or supra-optimal concentrations of NaCl as a penalty to reduced growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3
Fig. 4a, b
Fig. 5a, b
Fig. 6a–c

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

BA:

6-Benzyladenine

CAT:

Catalase

MDA:

Malondialdehyde

MS:

Murashige and Skoog basal medium

REL:

Relative electrolytic leakage

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

TSS:

Total soluble sugars

TWC:

Tissue water content

References

  • Balonkin YV, Kotov AA, Myasoedov NA, Khailova GF, Kurkova EB, Lun’kov RV, Kotova LM (2005) Involvement of long-distance Na+ transport in maintaining water potential gradient in the medium-root-leaf system of a halophyte Suaeda altissima. Russ J Plant Physiol 52:489–496

    Article  Google Scholar 

  • Basu S, Gangopadhyay G, Mukherjee BB (2002) Salt tolerance in rice in vitro: Implication of accumulation of Na+, K+ and proline. Plant Cell Tissue Organ Cult 69:55–64

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  • Bennici A, Corrado T (2009) Ultrastructural effects of salinity in Nicotiana bigelovii var. bigelovii callus cells and Allium cepa roots. Caryolog 62(2):124–133

    Google Scholar 

  • Bracci T, Minnocci A, Sebastiani L (2008) In vitro olive (Olea europaea L.) cvs Frantoio and Moraiolo microshoot tolerance to NaCl. Plant Biosyst 142:563–571

    Google Scholar 

  • Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  Google Scholar 

  • Cano EA, Pérez-Alfocea F, Moreno V, Caro M, Bolarin MC (1998) Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell Tissue Organ Cult 53:19–26

    Article  Google Scholar 

  • Cherian S, Reddy MP (2003) Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora Moq. Biol Plant 46:193–198

    Article  CAS  Google Scholar 

  • Daniells IG, Holland JF, Young RR, Alston CL, Bernardi AL (2001) Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Aust J Plant Exp Agric 41:211–217

    Article  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomor M, Senhaji NS (2007) Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Humphries EC (1956) Mineral components and ash analysis. In: Peach K, Tracey NV (eds) Modern methods of plant analysis, vol 1. Springer, Berlin, pp 468–502

    Google Scholar 

  • James JJ, Alder NN, Mühling KH, Läuchli AE, Shackel KA, Donovan LA, Richards JH (2006) High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermiculatus. J Expt Bot 57:139–147

    Article  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85(3):237–254

    Article  CAS  PubMed  Google Scholar 

  • Khan MH, Panda SK (2007) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    Article  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J Arid Environ 45:73–84

    Article  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Suprasanna P (2009a) Morphological and molecular diversity analysis among the Indian clones of Sesuvium portulacastrum L. Genet Resour Crop Evol 56:705–717

    Article  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2009b) Sesuvium portulacastrum (L.) L. a promising halophyte: cultivation, utilization and distribution in India. Genet Resour Crop Evol 56:741–747

    Article  Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 102:17–25. doi: 10.1007/s11240-010-9699-3

    Article  Google Scholar 

  • Lovelock CE, Ball MC (2002) Influence of salinity on photosynthesis of halophytes. In: Läuchli A, Lüttge U (eds) Salinity: environment—plant—molecules. Kluwer, Dordrecht, pp 315–339

    Google Scholar 

  • Messedi D, Labidi N, Grignon C, Abdelly C (2004) Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. J Plant Nutr Soil Sci 167:720–725

    Article  CAS  Google Scholar 

  • Mills D, Zhang G, Benzioni A (2001) Effect of different salts and of ABA on growth and mineral uptake in Jojoba shoots grown in vitro. J Plant Physiol 158:1031–1039

    Article  CAS  Google Scholar 

  • Moseki B, Buru JC (2010) Ionic and water relations of Sesuvium portulacastrum (L). Sci Res Essay 5:35–40

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Tornero O, Tallón CI, Porras I, Navarro JM (2009) Physiological and growth changes in micropropagated Citrus macrophylla explants due to salinity. J Plant Physiol 166(17):1923–1933

    Article  PubMed  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular land plants: costs and benefits in relation to efficiency of use of water, energy and nitrogen. New Phytol 101:25–77

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Šiler B, Mišić D, Filipović B, Popović Z, Cvetić T, Mijović A (2007) Effects of salinity on in vitro growth and photosynthesis of common centaury (Centaurium erythraea Rafn.). Arch Biol Sci Belgrade 59(2):129–134

    Google Scholar 

  • Slama I, Ghnaya T, Savouré A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  Google Scholar 

  • Touchette BW (2006) Salt tolerance in a Juncus roemerianus brackish marsh: spatial variations in plant water relations. J Exp Marine Biol Ecol 337:1–12

    Article  CAS  Google Scholar 

  • Troncoso A, Matte C, Cantos M, Lavee S (1999) Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties. Vitis 38:55–60

    CAS  Google Scholar 

  • Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481

    Article  Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2003) In vitro screening of mulberry (Morus spp.) for salinity tolerance. Plant Cell Rep 22:350–357

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult 63:199–206

    Article  CAS  Google Scholar 

  • Woodward AJ, Bennett IJ (2005) The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult 82:189–200

    Article  CAS  Google Scholar 

  • Yang J, Yen HE (2002) Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol 130:1032–1042

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Yang YL, He WL, Zhao X, Zhang LX (2004) Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica. In Vitro Cell Dev Biol Plant 40:491–494

    Article  CAS  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The senior author is grateful to the Department of Atomic Energy (DAE), Board for Research in Nuclear Science (BRNS), for the financial support under the BARC-UOP collaborative Ph.D. research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Suprasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokhande, V.H., Nikam, T.D., Patade, V.Y. et al. Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L.. Plant Cell Tiss Organ Cult 104, 41–49 (2011). https://doi.org/10.1007/s11240-010-9802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9802-9

Keywords

Navigation