Skip to main content
Log in

Enhanced spontaneous thrombolysis: A new therapeutic challenge

  • Frontiers in Thrombocardiology
  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Spontaneous thrombolysis is an endogenous protective mechanism against lasting arterial thrombotic occlusion, which is implicated in the pathogenesis of myocardial infarction and acute coronary events. Novel therapies for coronary heart disease (CHD) targeting atherosclerosis and thrombosis, together with cardiovascular prevention programs targeting risk-factors and lifestyle provide evidence that CHD is preventable. Although reduced fibrinolytic activity is a recognized risk-factor for ischemic cardiovascular events, it has so far been neglected. Our knowledge of the fibrinolytic effect of drugs commonly used for CHD such as antiplatelet agents (aspirin, ticlopidine, clopidogrel), anti-diabetic biguanides (phenformin, metformin) or anti-hypertensive drugs is scanty and conflicting. This is mainly due to the lack of a global test of spontaneous thrombolysis, as opposed to fibrinolysis of plasma or whole blood, i.e. the assessment of various activators and inhibitors of the fibrinolytic system. A recently described technique allows the measurement of spontaneous thrombolysis, that is, lysis of an autologous platelet-rich thrombus in the absence of added plasminogen activators. Early results suggest that this test may have significant clinical potential both in identifying those at risk of fatal cardiac events and in finding new therapeutic avenues or lifestyles to improve spontaneous thrombolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMI:

acute myocardial infarction

TAFI:

thrombin activatable fibrinolysis inhibitor

t-PA:

tissue-type plasminogen activator

u–PA:

urokinase-type plasminogen activator

PAI:

plasminogen activator inhibitor

ELT:

Euglobulin Lysis Time

FDP:

fibrin degradation product

Alpha 2–AP:

alpha 2 antiplasmin

References

  1. Swan HJ (1989) Acute myocardial infarction: a failure of timely, spontaneous thrombolysis. J Am Coll Cardiol 13:1435–1437

    Article  CAS  PubMed  Google Scholar 

  2. Osterlund B, Andersson B, Haggmark S et al. (2002) Myocardial ischemia induces coronary t-PA release in the pig. Acta Anaesthesiol. Scand 46:271–278

    CAS  Google Scholar 

  3. Johansson L, Jansson JH, Boman K (2000) Tissue plasminogen activator, plasminogen activator inhibitor and tissue plasminogen activator/plasminogen activator inhibitor-1 complex as risk factors for the development of a first stroke. Stroke 31:26–32

    CAS  PubMed  Google Scholar 

  4. DeWood MA, Spores J, Notske R (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902

    Article  CAS  PubMed  Google Scholar 

  5. Sanborn TA, Faxon DP, Kellett MA (1983) Serial angiographic evidence of rapid resolution of coronary artery stenosis. Chest 84:302–304

    CAS  PubMed  Google Scholar 

  6. Zingerman LS, Golikov AP, Topchiian GS (1988) The possibility of spontaneous lysis of a coronary thrombus patient, with acute myocardial infarct. Kardioologiia 28:24–28

    CAS  Google Scholar 

  7. Christian TF, Milavetz, JJ, Miller TD (1998) Prevalence of spontaneous reperfusion and associated myocardial salvage in patients with acute myocardial infarction. Am Heart J 135:421–427

    Article  CAS  PubMed  Google Scholar 

  8. Lee CW, Hong MK, Lee JH (2001) Determinants and prognostic significance of spontaneous coronary recanalization in acute myocardial infarction. Am J Cardiol 87:951–953

    Article  CAS  PubMed  Google Scholar 

  9. Seibert CE, Swanson WB (1976) Lysis of thrombus in internal carotid artery in the neck. Report of a case. Acta Radiol Suppl, 347:271–275

    CAS  PubMed  Google Scholar 

  10. Engel HJ, Lichtlen P (1977) Indications for a spontaneous lysis in the human coronary system–-coronary stenosis as a dynamic process? Verh Dtsch Ges Inn. Med 83:245–249

    CAS  Google Scholar 

  11. Weiner MA, Sniderman KW, Sos TA (1984) Two cases of spontaneous lysis of arterial thrombi. Cardiovasc Intervent Radiol 7:24–27

    CAS  PubMed  Google Scholar 

  12. Weber W, Hotker U, Schild H (1989) Spontaneous arterial recanalization–-a case report. Rontgenblatter 42:172–173

    CAS  PubMed  Google Scholar 

  13. Chen LE, Seaber AV, Urbaniak JR (1996) Thrombosis and thrombolysis in crushed arteries with or without anastomosis: a new microvascular model. Reconstr Microsurg 12:31–38.

    Article  CAS  Google Scholar 

  14. Schini–Kerth VB (1999) Vascular biosynthesis of nitric oxide: effect on hemostasis and fibrinolysis. Transfus Clin Biol 6:355–363

    Article  CAS  PubMed  Google Scholar 

  15. Rosenhek R, Korschineck I, Gharehbaghi–Schnell E (2003) Fibrinolytic balance of the arterial wall: pulmonary artery displays increased fibrinolytic potential compared with aorta. Lab Invest 83:871–876

    CAS  PubMed  Google Scholar 

  16. Zeng B, Bruce D, Kril J (2002) Influence of plasminogen deficiency on the contribution of polymorphonuclear leucocytes to fibrin/ogenolysis: studies in plasminogen knock–out mice. Thromb Haemost 88:805–810

    CAS  PubMed  Google Scholar 

  17. Burnand KG, Gaffney PJ, McGuinness CL (1998) The role of the monocyte in the generation and dissolution of arterial and venous thrombi. Cardiovasc Surg 6:119–125

    Article  CAS  PubMed  Google Scholar 

  18. Jang IK, Gold HK, Ziskind AA (1989) Differential sensitivity of erythrocyte–rich and platelet–rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator. Circulation 79:920–928

    CAS  PubMed  Google Scholar 

  19. Niessen F, Hilger T, Hoehn M et al. (2003) Differences in clot preparation determine outcome of recombinant tissue plasminogen activator treatment in experimental thromboembolic stroke. Stroke 34:2019–2024

    Article  CAS  PubMed  Google Scholar 

  20. Torr-Brown SR, Sobel BE (1993) Attenuation of thrombolysis by release of plasminogen activator inhibitor type–1 from platelets. Thromb Res 72:413–421

    Article  CAS  PubMed  Google Scholar 

  21. Robbie LA, Bennett B, Croll AM (1996) Proteins of the fibrinolytic system in human thrombi. Thromb Haemost 75:127–133

    CAS  PubMed  Google Scholar 

  22. Fay WP, Murphy JG, Owen WG (1996) High concentrations of active plasminogen activator inhibitor in porcine coronary artery thrombi. Arterioscler. Thromb Vasc Biol 16:1277–1284

    CAS  Google Scholar 

  23. Mosnier LO, Buijtenhuijs P, Marx PF (2003) Identification of thrombin activatable fibrinolysis inhibitor (TAFI) in human platelets. Blood 101:4844–4846

    Article  CAS  PubMed  Google Scholar 

  24. Moir E, Booth NA, Bennett B, Roppic LA. (2001) Polymorphonuclear leucocytes mediate endogenous thrombus lysis via a u-PA-dependent mechanism. Br J Haematol 113:72–80

    Article  CAS  PubMed  Google Scholar 

  25. Taylor FB Jr, Lockhart MS (1985) Whole blood clot lysis: In vitro modulation by activated protein C. Thromb Res 37:639–649

    Article  CAS  PubMed  Google Scholar 

  26. Wun TC, Capuano A (1985) Spontaneous fibrinolysis in whole human plasma. Identification of tissue activator-related protein as the major plasminogen activator causing spontaneous activity in vitro. J Biol Chem 260:5061–5066

    CAS  PubMed  Google Scholar 

  27. Glassman A, Abram M, Baxter G, Swett A (1993) Euglobulin lysis times: an update. Ann Clin Lab Sci 23:329–332

    CAS  PubMed  Google Scholar 

  28. Boudjeltia KZ, Cauchie P, Remacle CM (2002) A new device for measurement of fibrin clot lysis: application for the Euglobulin Clot Lysis Time. BMC. Biotechnol 2:8.

    Article  PubMed  Google Scholar 

  29. Soeki T, Tamura Y, Shinohara H (2002) Plasma concentrations of fibrinolytic factors in the subacute phase of myocardial infarction predict recurrent myocardial infarction or sudden cardiac death. Int J Cardiol 85:277–283

    Article  PubMed  Google Scholar 

  30. Jansson JH, Olofsson BO, Nilsson TK (1993) Predictive value of tissue plasminogen activator mass concentration on long-term mortality in patients with coronary artery disease. Circulation 88:2030–2034

    CAS  PubMed  Google Scholar 

  31. Geppert A, Graf S, Beckmann R (1998) Concentration of endogenous tPA antigen in coronary artery disease: relation to thrombotic events, aspirin treatment, hyperlipidemia, and multivessel disease. Arterioscler Thromb Vasc Biol 18:1634–1642

    CAS  PubMed  Google Scholar 

  32. Ver Elst K, Jochmans K, De Pauw A, et al. (2002) Plasma D-dimer concentrations in different clinical conditions. Acta Clin Belg 57:325–330

    CAS  PubMed  Google Scholar 

  33. Pedersen OD, Gram J, Jespersen J (1995) Plasminogen activator inhibitor type-1 determines plasmin formation in patients with ischaemic heart disease. Thromb Haemost 73:835– 840

    CAS  PubMed  Google Scholar 

  34. Kwaan HC, Nabhan C (2003) Hereditary and acquired defects in the fibrinolytic system associated with thrombosis. Hematol Oncol Clin North Am 17:103–114

    Article  PubMed  Google Scholar 

  35. Juhan-Vague I, Morange PE, Aubert H (2002) Plasma thrombin-activatable fibrinolysis inhibitor antigen concentration and genotype in relation to myocardial infarction in the north and south of Europe. Arterioscler Thromb Vasc Biol 22:867–873

    Article  CAS  PubMed  Google Scholar 

  36. Lijnen HR (2001) Gene targeting in hemostasis. Alpha2-antiplasmin. Front Biosci 6 :D239–47

    CAS  PubMed  Google Scholar 

  37. Stegnar M, Uhrin P, Peternel P (1998) The 4G/5G sequence polymorphism in the promoter of plasminogen activator inhibitor-1 gene: relationship to plasma PAI-1 levels in venous thromboembolism. Thromb Haemost 79:975–979

    CAS  PubMed  Google Scholar 

  38. Dossenbach–Glaninger A, van Trotsenburg M, Dossenbach M (2003) Plasminogen activator inhibitor-1 4G/5G polymorphism and coagulation factor XIII Val34Leu polymorphism: impaired fibrinolysis and early pregnancy loss. Clin Chem 49:1081– 1086

    Article  CAS  PubMed  Google Scholar 

  39. Hoekstra T, Geleijnse JM, Kluft C (2003) 4G/4G Genotype of PAI-1 is associated with reduced risk of stroke in elderly. Stroke 34:2822–2828

    Article  CAS  PubMed  Google Scholar 

  40. Menon IS (1970) Aspirin and blood fibrinolysis. Lancet 1:364.

    CAS  PubMed  Google Scholar 

  41. Moroz LA (1977) Increased blood fibrinolytic activity after aspirin ingestion. N Engl J Med 296:525–529

    Article  CAS  PubMed  Google Scholar 

  42. Bjornsson TD, Schneider DE, Berger H Jr (1989) Aspirin acetylates fibrinogen and enhances fibrinolysis. J Pharmacol Exp Ther 250:154–161

    CAS  PubMed  Google Scholar 

  43. Milwidsky A, Finci–Yeheskel Z, Mayer M (1991) Stimulation of plasmin by aspirin. Thromb Haemostas 65:389–393

    CAS  Google Scholar 

  44. Levin RI, Harpel PC, Harpel JG, et al. (1989) Inhibition of tissue plasminogen activator activity by aspirin in vivo. Blood 74:1635–1643

    CAS  PubMed  Google Scholar 

  45. Keber I, Jereb M, Keber D (1987) Aspirin decreases fibrinolytic potential during venous occlusion but not during acute physical activity. Thromb Res 46:205–212

    Article  CAS  PubMed  Google Scholar 

  46. Levin RI, Harpel PC, Weil D, et al. (1984) Aspirin inhibits plasminogen activator activity in vivo. Studies utilizing a new assay to quantify plasminogen activator activity. J Clin Invest 74:571–580

    CAS  PubMed  Google Scholar 

  47. Winther K, Gleerup G, Husted S (1994) Do low and moderate doses of acetylsalicylic acid affect tissue plasminogen activator at rest and after exercise? Am J Cardiol 73:703–705

    Article  CAS  PubMed  Google Scholar 

  48. Husted SE, Kristensen SD, Vissinger H, et al. (1992) Intravenous acetylsalicylic acid–dose related effects on platelet function and fibrinolysis in healthy males. Thromb Haemost 68:226–229

    CAS  PubMed  Google Scholar 

  49. Gum PA, Kottke-Marchant K, Poggio ED (2001) Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am J Cardiol 88:230–235

    Article  CAS  PubMed  Google Scholar 

  50. Gryglewski RJ, Korbut R, Swies J, et al. (1996) Thrombolytic action of ticlopidine: Possible mechanisms. Eur J Pharmacol 308:61– 67

    Article  CAS  PubMed  Google Scholar 

  51. Slavina NN, Averkov OV, Dobrovolskii AB, et al. (2003) Non ST elevation acute coronary syndrome. Parameters of fibrinolysis during short term use of ticlopidine or clopidogrel. Kardiologiia 43:4–11

    CAS  Google Scholar 

  52. Taher TH, Stang L, Gordon PA, et al. (2004) Armstrong PW. Clopidogrel does not induce fibrinolysis in healthy subjects. Thromb Res 114:97–100

    Article  CAS  PubMed  Google Scholar 

  53. Moser M, Bertram U, Peter K, et al. (2003) Abciximab, eptifibatide, and tirofiban exhibit dose-dependent potencies to dissolve platelet aggregates. J Cardiovasc Pharmacol 41:586–592

    Article  CAS  PubMed  Google Scholar 

  54. Sobel BE (2003) Fibrinolysis and diabetes. Front Biosci 8:d1085–92

    CAS  PubMed  Google Scholar 

  55. Chiquette E, Chilton R (2002) Cardiovascular disease: much more aggressivein patients with type 2 diabetes. Curr Atheroscler Rep 4:134–142

    PubMed  Google Scholar 

  56. Libby P (2003) Metformin and vascular protection: a cardiologist’s view. Diabetes Metab 29:6S117–120

    Article  CAS  PubMed  Google Scholar 

  57. Panunti B, Kunhiraman B, Fonseca V (2005) The impact of antidiabetic therapies on cardiovascular diseases. Curr Atheroscler Rep 7:50–57

    CAS  PubMed  Google Scholar 

  58. Vaughan, D.E (1998) Fibrinolytic balance, the renin-angiotensin system and atherosclerotic disease. Eur Heart J 19, Suppl G:G9–12

    Google Scholar 

  59. Ludwig S, Dharmalingam S, Erickson-Nesmith S, et al. (2005) Impact of simvastatin on hemostatic and fibrinolytic regulators in Type 2 diabetes mellitus. Diabetes Res Clin Pract 70: 110–118

    Article  CAS  PubMed  Google Scholar 

  60. Malyszko JS, Hryszko T, Mysliwiec M (2003) Influence of simvastatin on aspects of thrombogenesis in CAPD patients. Perit Dial Int 23:260–266

    CAS  PubMed  Google Scholar 

  61. John S, Schneider MP, Delles C, et al. (2005) Lipid-independent effects of statins on endothelial function and bioavailability of nitric oxide in hypercholesterolemic patients. Am Heart J 149:473–485

    Article  PubMed  CAS  Google Scholar 

  62. Undas A, Celinska–Lowenhoff M, Kaczor M, et al. (2004) New nonlipid effects of statins and their clinical relevance in cardiovascular disease. Thromb Haemost 91:1065–1077

    CAS  PubMed  Google Scholar 

  63. Krysiak R, Okopien B, Herman Z (2003) Effects of HMG-CoA reductase inhibitors on coagulation and fibrinolytic processes. Drugs 63:1821–1854

    Article  CAS  PubMed  Google Scholar 

  64. Sanguigni V, Pignatelli P, Lenti L, et al. (2005) Short-term treatment with atorvastatin reduces platelet CD40 ligand and thrombin generation in hypercholesterolemic patients. Circ 111(4):412–419

    Article  CAS  Google Scholar 

  65. Yamakuchi M, Greer JJ, Cameron SJ, et al. (2005) HMG-CoA reductase inhibitors inhibit endothelial exocytosis and decrease myocardial infarct size. Circ Res 96:1185–1192

    Article  CAS  PubMed  Google Scholar 

  66. Singh U, Devaraj S, Jialal I (2005) C–reactive protein decreases tissue plasminogen activator activity in human aortic endothelial cells: evidence that C–reactive protein is a procoagulant. Arterioscler Thromb Vasc Biol 25:2216–2221

    Article  CAS  PubMed  Google Scholar 

  67. Nissen SE (2005) Effect of intensive lipid lowering on progression of coronary atherosclerosis: evidence for an early benefit from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am J Cardiol 96(5A):61F–68F

    Article  CAS  PubMed  Google Scholar 

  68. Kinjo K, Sato H, Sakata Y, et al. (2005) Osaka Acute Coronary Insufficiency Study (OACIS) Group. Relation of C–reactive protein and one-year survival after acute myocardial infarction with versus without statin therapy. Am J Cardiol 96:617–621

    Article  CAS  PubMed  Google Scholar 

  69. Yamamoto, J, Yamashita T, Ikarugi H, et al. (2003) Thrombosis Test: a global in vitro test of platelet function and thrombolysis. Blood Coagul. Fibrinolysis 14:31–39

    CAS  Google Scholar 

  70. Yamamoto J, Kovacs IB (2003) Shear-induced in vitro haemostasis/thrombosis tests: the benefit of using native blood. Blood Coagul Fibrinolysis 14:697–702

    Article  PubMed  Google Scholar 

  71. Ikarugi H, Yamashita T, Aoki R (2003) Impaired spontaneous thrombolytic activity in elderly and in habitual smokers, as measured by a new global thrombosis test. Blood Coagul. Fibrinolysis 14:781–784

    Google Scholar 

  72. Yamashita T, Sato A, Ikarugi H. Significantly reduced spontaneous thrombolytic activity in elderly men: a possible explanation for gender differences in risk of acute coronary syndromes (Thromb. Res., in press).

  73. Gils A, Declerck PJ (2004) The structural basis for the pathophysiological relevance of PAI-1 in cardiovascular diseases and the development of potential PAI-1 inhibitors. Thromb Haemost 91:425–437

    CAS  PubMed  Google Scholar 

  74. van Giezen JJ, Wahlund G, Abrahamsson T. (1997) The Fab-fragment of a PAI-1 inhibiting antibody reduces thrombus size and restores blood flow in a rat model of arterial thrombosis. Thromb Haemost 77:964–969

    PubMed  Google Scholar 

  75. Biemond BJ, Levi M, Coronel R, Janse MJ, ten Cate JW, Pannekoek H. (1995) Thrombolysis and reocclusion in experimental jugular vein and coronary artery thrombosis. Effects of a plasminogen activator inhibitor type 1–neutralizing monoclonal antibody. Circulation 91:1175–1181

    CAS  PubMed  Google Scholar 

  76. Eitzman DT, Fay WP, Lawrence DA, et al. (1995) Peptide–mediated inactivation of recombinant and platelet plasminogen activator inhibitor–1 in vitro. J Clin Invest 95:2416–2420

    CAS  PubMed  Google Scholar 

  77. Charlton PA, Faint RW, Bent F, (1996) Evaluation of a low molecular weight modulator of human plasminogen activator inhibitor-1 activity. Thromb Haemost 75:808–815

    CAS  PubMed  Google Scholar 

  78. Friederich PW, Levi M, Biemond BJ, et al. (1997) Novel low-molecular-weight inhibitor of PAI-1 (XR5118) promotes endogenous fibrinolysis and reduces postthrombolysis thrombus growth in rabbits. Circulation 96:916–921

    CAS  PubMed  Google Scholar 

  79. Carmeliet P, Stassen JM, Schoonjans L, et al. (1993) Plasminogen activator inhibitor-1 gene-deficient mice. II. Effects on hemostasis, thrombosis, and thrombolysis. J Clin Invest 92:2756–2760

    Article  CAS  PubMed  Google Scholar 

  80. Chavakis T, Pixley RA, Isordia-Salas I, Colman RW, Preissner KT. (2002) A novel antithrombotic role for high molecular weight kininogen as inhibitor of plasminogen activator inhibitor–1 function. J Biol Chem 277:32677–32682

    Article  CAS  PubMed  Google Scholar 

  81. Hennan JK, Elokdah H, Leal M, et al. (2005) Evaluation of PAI–039 1-benzyl-5-[4-(trifluoromethoxy)phenyl]-1H-indol-3-yl(oxo)acetic acid], a novel plasminogen activator inhibitor–1 inhibitor, in a canine model of coronary artery thrombosis. J Pharmacol Exp Ther 314:710–716

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki K, Muto Y, Fushihara K, et al. (2004) Enhancement of fibrinolysis by EF6265 [(S)-7-amino-2-[[[(R)-2-methyl-1-(3-phenylpropanoylamino)propyl]hydroxyphosphinoyl] methyl]heptanoic acid], a specific inhibitor of plasma carboxypeptidase Br J Pharmacol Exp Ther 309:607–615

    Article  CAS  Google Scholar 

  83. Nair CH., Azhar A, Wilson JD., Dhall DP. (1991) Studies on fibrin network structure in human plasma. Thromb Res 64:477–485

    Article  CAS  PubMed  Google Scholar 

  84. Williams F, Fatah K, Hjemdahl P, Blomback M. (1998) Better increase in fibrin gel porosity by low dose than intermediate does acetylsalicylic acid. Eur Heart J 19:1666–1672

    Article  CAS  PubMed  Google Scholar 

  85. Manganaro A, Ruggeri M, Ando G, Longo M, Vita G. (2002) Endothelial functions in pathophysiology of thrombosis and fibrinollysis: late spontaneous recanalization of an occluded internal carotid artery – a case report. Angiology 53:99–103

    Article  PubMed  Google Scholar 

  86. Kim JA, Tran ND, Zhou W, Fisher M. (2005) Dipyridamole enhances tissue plasminogen activator release by brain capillary endothelial cells. Thromb Res 115:435–438

    Article  CAS  PubMed  Google Scholar 

  87. Lin Z, Kumar A, SenBanerjee S, Staniszewski P, Parmar K, Vaughan DE, Gimbrone MA Jr, Balasubramanian V, Garcia-Gardena G, Jain MK. (2005) Kruppel–like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 96:e48– 57

    Article  CAS  PubMed  Google Scholar 

  88. Marchetti M, Vignoli A, Bani MR, Balducci D, Barbui T, Falanga A. (2003) All-trans retinoic acid modulates microvascular endothelial cell hemostatic properties. Haematologica 88:895– 905

    CAS  PubMed  Google Scholar 

  89. Chen PR, Lee CC, Chang H, Tsai CE. (2005) Sesamol regulates plasminogen activator gene expression in cultured endothelial cells: a potential effect on the fibrinolytic system. J Nutr Biochem 16:59–64

    Article  CAS  PubMed  Google Scholar 

  90. Markle RA, Han J, Summers BD, et al. (2003) Pitavastatin alters the expression of thrombotic and fibrinolytic proteins in human vascular cells. J Cell Biochem 90:23–32

    Article  CAS  PubMed  Google Scholar 

  91. Carmeliet P, Stassen JM, Van Vlaenderen L, Meidell RS, Collen D, Gerard RD. (1997) Adenovirus-mediated transfer if tissue-type plasminogen activator augments thrombolysis in tissue-type plasminogen activator-deficient and plasminogen activator inhibitor-1-overexpressing mice. Blood 90:1527–1534

    CAS  PubMed  Google Scholar 

  92. Ozuyaman B, Ebner P, Nielsner U, et al. (2005) Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thromb Haemost 94:770–772

    PubMed  Google Scholar 

  93. Thum T, Tsikas D, Stein S, Schultheiss M, Eigenhaler M, Anker SD, Poole-Wilson PA, Ertl G, Bauersachs J. (2005) Supression of endothelial progenitor cells in human coronary artery disease by endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. J Am Coll Cardiol 46:1693–1701

    Article  CAS  PubMed  Google Scholar 

  94. Fadini GP, Miorin M, Facco M, et al. (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449– 1457

    Article  CAS  PubMed  Google Scholar 

  95. Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C. (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441– 1448

    Article  CAS  PubMed  Google Scholar 

  96. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A. (2005) Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis Nov 7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yamamoto PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacs, I.B., Gorog, D.A. & Yamamoto, J. Enhanced spontaneous thrombolysis: A new therapeutic challenge. J Thromb Thrombolysis 21, 221–227 (2006). https://doi.org/10.1007/s11239-006-6579-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-006-6579-0

Key Words

Navigation