Skip to main content
Log in

Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a system of hyperbolic nonlinear equations describing the dynamics of interaction between optical and acoustic modes of a complex crystal lattice (without a symmetry center) consisting of two sublattices. This system can be considered a nonlinear generalization of the well-known Born-Huang Kun model to the case of arbitrarily large sublattice displacements. For a suitable choice of parameters, the system reduces to the sine-Gordon equation or to the classical equations of elasticity theory. If we introduce physically natural dissipative forces into the system, then we can prove that a compact attractor exists and that trajectories converge to equilibrium solutions. In the one-dimensional case, we describe the structure of equilibrium solutions completely and obtain asymptotic solutions for the wave propagation. In the presence of inhomogeneous perturbations, this system is reducible to the well-known Hopfield model describing the attractor neural network and having complex behavior regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. L. Aero, Usp. Mekh., 1, No.3, 131 (2002).

    Google Scholar 

  2. M. Born and H. Kun, Dynamical Theory of Crystal Lattices (Intl. Ser. Monographs on Physics), Clarendon, Oxford (1954).

    Google Scholar 

  3. O. A. Ladyzhenskaya, Russ. Math. Surveys, 42, No.6, 27 (1987).

    Google Scholar 

  4. J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, R. I. (1988).

    Google Scholar 

  5. J. K. Hale, L. T. Magalhaes, and W. M. Oliva, Dynamics in Infinite Dimensions, Springer, New York (2002).

    Google Scholar 

  6. A. B. Babin and M. I. Vishik, J. Math. Pures Appl., 62, 441 (1983); P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integrable Manifolds and Inertial Manifolds for Dissipative Differential Equations, Springer, New York (1989).

    Google Scholar 

  7. Yu. Il’yashenko and Weigu Li, Nonlocal Bifurcations [in Russian], MTsNMO CheRo, Moscow (1999); English transl., Amer. Math. Soc., Providence, R. I. (1999).

    Google Scholar 

  8. V. P. Maslov and G. A. Omel’yanov, Russ. Math. Surveys, 36, 73 (1981).

    Google Scholar 

  9. I. A. Molotkov and S. A. Vakulenko, Nonlinear Localized Waves [in Russian], Izdatel’stvo LGU, Leningrad (1988).

    Google Scholar 

  10. V. I. Arnol’d, V. S. Afrajmovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, “Theory of bifurcations, ” in: Dynamical Systems 5 [in Russian] (Sovrem. Prob. Mat. Fund. Naprav., V. I. Arnol’d, ed.), VINITI, Moscow (1986), p. 5; English transl.: “Bifurcation theory,” in: Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (Ency. Math. Sci., Vol. 5, V. I. Arnol’d, ed.), Springer, Berlin (1994), p. 7.

    Google Scholar 

  11. L. Simon, Ann. Math., 118, 525 (1983).

    Google Scholar 

  12. M. Jendoubi, J. Differential Equations, 144, 302 (1998).

    Article  Google Scholar 

  13. P. Polacik, “Parabolic equations: asymptotic behavior and dynamics on invariant manifolds,” in: Handbook of Dynamical Systems (B. Fiedler, ed.), Vol. 2, Elsevier, Amsterdam (2002), p. 835.

    Google Scholar 

  14. D. Henry, J. Differential Equations, 59, 165 (1985).

    Article  Google Scholar 

  15. T. Ohta and D. Jasnov, Phys. Rev. E, 56, 5648 (1997).

    Article  CAS  Google Scholar 

  16. D. M. Petrich and R. E. Goldstein, Phys. Rev. Lett., 72, 1120 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. S. A. Vakulenko, Ann. Inst. H. Poincare, 66, 373 (1997).

    Google Scholar 

  18. S. A. Vakulenko, Adv. Differential Equations, 5, 1739 (2000).

    Google Scholar 

  19. J. J. Hopfield, Proc. Nat. Acad. Sci. USA, 79, 2554 (1982).

    CAS  PubMed  Google Scholar 

  20. M. Mezard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore (1987).

    Google Scholar 

  21. R. Edwards, Math. Methods Appl. Sci., 19, 651 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 143, No. 3, pp. 357–367, June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aero, E.L., Vakulenko, S.A. Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice. Theor Math Phys 143, 782–791 (2005). https://doi.org/10.1007/s11232-005-0105-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-005-0105-y

Keywords

Navigation