Skip to main content
Log in

Some topological properties of paraconsistent models

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

In this work, we investigate the relationship between paraconsistent semantics and some well-known topological spaces such as connected and continuous spaces. We also discuss homotopies as truth preserving operations in paraconsistent topological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Thanks to the anonymous referee for bringing this point to my attention.

  2. For instance, classical oriented readers of paraconsistency may find it quite puzzling when paraconsistent logicians employ proof by contradiction as a proof method. Paraconsistent logic or dialetheism, note again, does not claim that all contradictions are acceptable.

  3. Thanks to Chris Mortensen for pointing this work out. Even if the paper appeared in 1981, the work had been carried out around 1978. In his paper, Goodman indicated that the results were based on an early work that appeared in 1978 only as an abstract.

  4. Remember that our meta-theory is classical, thus the subset relation we resort to is also classical.

  5. See Ferguson (2012) for a more detailed treatment of non-classical logics that do not satisfy DeMorgan’s laws.

  6. Also, note that connectedness as a property is not definable in the (classical) modal language (Cate et al. 2009).

References

  • Aiello, M., Pratt-Hartman, I. E., & van Benthem, J. (2007). Handbook of spatial logics. Berlin: Springer.

    Book  Google Scholar 

  • Aiello, M., & van Benthem, J. (2002). A modal walk through space. Journal of Applied Non-Classical Logics, 12(3–4), 319–363.

    Article  Google Scholar 

  • Aiello, M., van Benthem, J., & Bezhanishvili, G. (2003). Reasoning about space: The modal way. Journal of Logic and Computation, 13(6), 889–920.

    Article  Google Scholar 

  • Artemov, S., Davoren, J. M., & Nerode, A. (1997). Modal logics and topological semantics for hybrid systems. Technical report. Mathematical Sciences Institute, Cornell University.

  • Başkent, C. (2011). Completeness of public announcement logic in topological spaces. Bulletin of Symbolic Logic, 17(1), 142.

    Google Scholar 

  • Başkent, C. (2012). Public announcement logic in geometric frameworks. Fundamenta Infomaticae, 118(3), 207–223.

    Google Scholar 

  • Béziau, J.-Y. (2002). S5 is a paraconsistent logic and so is first-order classical logic. Logical Studies, 19(1), 1–9.

    Google Scholar 

  • Béziau, J.-Y. (2005). Paraconsistent logic from a modal viewpoint. Journal of Applied Logic, 3(1), 7–14.

    Article  Google Scholar 

  • Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge tracts in theoretical computer science. Cambridge: Cambridge University Press.

  • Bourbaki, N. (1996). General topology. Elements of nathematics (Vol. 1). Reading, MA: Addison-Wesley.

  • Cate, B. T., Gabelaia, D., & Sustretov, D. (2009). Modal languages for topology: Expressivity and definability. Annals of Pure and Applied Logic, 159(1—-2), 146–170.

    Article  Google Scholar 

  • da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15(4), 497–510.

    Article  Google Scholar 

  • da Costa, N. C. A., Krause, D., & Bueno, O. (2007). Philosophy of logic. In D. Jacquette (Ed.), Paraconsistent logics and paraconsistency (Vol. 5, pp. 655–781). Amsterdam: Elsevier.

    Google Scholar 

  • Ferguson, T. M. (2012). Notes on the model theory of demorgan logics. Notre Dame Journal of Formal Logic, 53(1), 113–132.

    Article  Google Scholar 

  • Goldblatt, R. (2006). Mathematical modal logic: A view of its evolution. In D. M. Gabbay & J. Woods (Eds.), Handbook of history of logic (Vol. 6). Amsterdam: Elsevier.

    Google Scholar 

  • Goodman, N. D. (1981). The logic of contradiction. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27(8–10), 119–126.

    Article  Google Scholar 

  • Kremer, P., & Mints, G. (2005). Dynamic topological logic. Annals of Pure and Applied Logic, 131(1—-3), 133–158.

    Article  Google Scholar 

  • McKinsey, J. C. C., & Tarski, A. (1944). The algebra of topology. The Annals of Mathematics, 45(1), 141–191.

    Article  Google Scholar 

  • McKinsey, J. C. C., & Tarski, A. (1946). On closed elements in closure algebras. The Annals of Mathematics, 47(1), 122–162.

    Article  Google Scholar 

  • Mints, G. (2000). A short introduction to intuitionistic logic. Amsterdam: Kluwer.

    Google Scholar 

  • Mortensen, C. (2000). Topological seperation principles and logical theories. Synthese, 125(1–2), 169–178.

    Article  Google Scholar 

  • Parikh, R. (1999). Beliefs, belief revision and splitting languages. In L. S. Moss, J. Ginzburg, & M. de Rijke (Eds.), Logic, language and computation. Stanford, CA: CSLI.

    Google Scholar 

  • Pratt-Hartman, I. E. (2007). First-order mereotopology. In M. Aiello, I. E. Pratt-Hartman, & J. van Benthem (Eds.), Handbook of spatial logics. Berlin: Springer.

    Google Scholar 

  • Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219–241.

    Article  Google Scholar 

  • Priest, G. (1998). What is so bad about contradictions? Journal of Philosophy, 95(8), 410–426.

    Article  Google Scholar 

  • Priest, G. (2002). Paraconsistent logic. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 6, pp. 287–393). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Priest, G. (2007). Paraconsistency and dialethism. In D. M. Gabbay & J. Woods (Eds.), Handbook of history of logic (1st ed., Vol. 8, pp. 129–204). Amsterdam: Elsevier.

    Google Scholar 

  • Priest, G. (2009). Dualising intuitionistic negation. Principia, 13(3), 165–184.

    Google Scholar 

  • Rauszer, C. (1977). Applications of kripke models to Heyting–Brouwer logic. Studia Logica, 36(1—-2), 61–71.

    Article  Google Scholar 

  • van Benthem, J., & Bezhanishvili, G. (2007). Modal logics of space. In M. Aiello, I. E. Pratt-Hartman, & J. van Benthem (Eds.), Handbook of spatial logics. Berlin: Springer.

  • van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic. Berlin: Springer.

    Google Scholar 

Download references

Acknowledgments

I thank to Chris Mortensen for pointing this out. I am grateful to Chris Mortensen and Graham Priest for their encouragement and feedback. I acknowledge the help and the detailed comments of anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Başkent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Başkent, C. Some topological properties of paraconsistent models. Synthese 190, 4023–4040 (2013). https://doi.org/10.1007/s11229-013-0246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-013-0246-8

Keywords

Navigation