Skip to main content
Log in

Theoretical studies on the proton-transfer reactions in propylene and pentadiene derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Due to the insufficient understanding of the intramolecular proton-transfer reactions in the heteroatoms-substituted propylene and pentadiene, relevant geometrical, electronic, and energetic properties of propylene derivatives (112) and pentadiene derivatives (1324) have been investigated theoretically. It appears that, the “enol” form is thermodynamically less stable than the corresponding tautomer except for 9, 12, and 21. Owing to the stabilization effects of the heteroatoms, the proton-transfer reactions are more favorable for the heteroatoms-substituted cases than that of the corresponding propylene or pentadiene. The proton-transfer barriers in the propylene derivatives are higher than those in the corresponding pentadiene derivatives due to the different steric conditions for the formation of transition states. These barriers have a linear correlation with the charges of their transferred hydrogen atoms. Relevant geometric and electronic variations have also been studied. Specially, H2O assists the proton-transfer reactions in propylene derivatives, but inhibits these reactions in pentadiene derivatives. The above trends are slightly changed when the polarizable-continuum-based aqueous phase is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bountis T (ed) (1992) Proton transfer in hydrogen-bonded systems. Plenum Press, New York

    Google Scholar 

  2. Scheiner S (1994) Acc Chem Res 27:402–408

    Article  CAS  Google Scholar 

  3. Fonseca TAO, Freitas MP, Cormanich RA, Ramalho TC, Tormena CF, Rittner R (2012) Beilstein J Org Chem 8:112–117

    Article  CAS  Google Scholar 

  4. Hess BA Jr, Schaad LJ (1983) J Am Chem Soc 105:7185–7186

    Article  CAS  Google Scholar 

  5. Roth WR, König J (1966) Justus Liebigs Ann Chem 699:24–32

    Article  CAS  Google Scholar 

  6. Bouma WJ, Poppinger D, Radom L (1977) J Am Chem Soc 99:6443–6444

    Article  CAS  Google Scholar 

  7. Smith BJ, Nguyen MT, Bouma WJ, Radom L (1991) J Am Chem Soc 113:6452–6458

    Article  CAS  Google Scholar 

  8. Juerschik S, Sulzer P, Petersson F, Mayhew CA, Jordan A, Agarwal B, Haidacher S, Seehauser H, Becker K, Maerk TD (2010) Anal Bioanal Chem 398:2813–2820

    Article  CAS  Google Scholar 

  9. Hudson CE, McAdoo DJ (2003) J Org Chem 68:2735–2740

    Article  CAS  Google Scholar 

  10. Gu Q, Trindle C, Knee JL (2012) J Chem Phys 137:091101/1–091101/4

    Article  CAS  Google Scholar 

  11. Lammertsma K, Prasad BV (1994) J Am Chem Soc 116:642–650

    Article  CAS  Google Scholar 

  12. Nagaoka M, Suenobu K, Yamabe T (1997) J Am Chem Soc 119:8023–8030

    Article  CAS  Google Scholar 

  13. Raissi H, Farzad F, Eslamdoost S, Mollania F (2013) J Theor Comput Chem 12:1350025/1–1350025/18

    CAS  Google Scholar 

  14. Ladell J, Post B (1954) Acta Crystallogr 7:559–564

    Article  CAS  Google Scholar 

  15. Leszczynski J, Kwiatkowski JS, Leszczynska D (1992) J Am Chem Soc 114:10089–10091

    Article  CAS  Google Scholar 

  16. Leszczynski J, Kwiatkowski JS, Leszczynska D (1993) J Am Chem Soc 115:5891

    Article  CAS  Google Scholar 

  17. Dapprich S, Frenking G (1993) Chem Phys Lett 205:337–342

    Article  CAS  Google Scholar 

  18. Jensen F (1995) J Am Chem Soc 117:7487–7492

    Article  CAS  Google Scholar 

  19. Tietze LF, Schulz G (1997) Chem Eur J 3:523–529

    Article  CAS  Google Scholar 

  20. Dinadayalane TC, Geetha K, Sastry GN (2003) J Phys Chem A 107:5479–5487

    Article  CAS  Google Scholar 

  21. Bosch E, Moreno M, Lluch JM (1992) J Am Chem Soc 114:2072–2076

    Article  CAS  Google Scholar 

  22. Bach RD, Canepa C (1996) J Org Chem 61:6346–6353

    Article  CAS  Google Scholar 

  23. Paul BK, Guchhait N (2011) Comput Theor Chem 972:1–13

    Article  CAS  Google Scholar 

  24. González L, Mó O, Yáñez M (1997) J Phys Chem A 101:9710–9719

    Article  CAS  Google Scholar 

  25. Nguyen MT, Weringa WD, Ha TK (1989) J Phys Chem 93:7956–7960

    Article  Google Scholar 

  26. Lin JF, Wu CC, Lien MH (1995) J Phys Chem 99:16903–16908

    Article  CAS  Google Scholar 

  27. Saettel NJ, Wiest O (2000) J Org Chem 65:2331–2336

    Article  CAS  Google Scholar 

  28. Lavigueur C, Foster EJ, Williams VE (2008) J Am Chem Soc 130:11791–11800

    Article  CAS  Google Scholar 

  29. Del BJE, Alkorta I, Sanchez-Sanz G, Elguero J (2012) J Phys Chem A 116:9205–9213

    Article  Google Scholar 

  30. Yang X, Fox T, Berke H (2012) Org Biomol Chem 10:852–860

    Article  CAS  Google Scholar 

  31. Basak A, Gupta SN, Chakrabarty K, Das GK (2013) Comput Theor Chem 1007:15–30

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, FarkasO, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA Gaussian 03, Revision D.01, Gaussian, Wallingford, CT, 2004

  33. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  35. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  Google Scholar 

  36. Craw JS, Bacskay GB (1992) Faraday Trans J Chem Soc 88:2315–2321

    Article  CAS  Google Scholar 

  37. Zhong A, Ge C, Liang H, Jiang H, Zhou Q (2012) Comput Theor Chem 988:13–18

    Article  CAS  Google Scholar 

  38. Wilson LY, Famini GR (1991) J Med Chem 34:1668–1674

    Article  CAS  Google Scholar 

  39. Fukui K (1971) Acc Chem Res 4:57–64

    Article  CAS  Google Scholar 

  40. Markova N, Enchev V (2004) J Mol Struct (Theochem) 679:195–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Li, H. Theoretical studies on the proton-transfer reactions in propylene and pentadiene derivatives. Struct Chem 26, 587–597 (2015). https://doi.org/10.1007/s11224-014-0521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0521-4

Keywords

Navigation