Skip to main content
Log in

Fractal and Multifractal Properties of Active Regions as Flare Precursors: A Case Study Based on SOHO/MDI and SDO/HMI Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Several studies indicate that fractal and multifractal parameters inferred from solar photospheric magnetic field measurements may help assessing the eruptive potential of Active Regions (ARs) and also predicting their flare activity. We further investigate this topic, by exploring the sensitivity of some parameters already used in the literature on data and methods employed for their estimation. In particular, we measured the generalized fractal dimensions D 0 and D 8, and the multifractal parameters C div and D div, on the time series of photospheric magnetograms of the flaring AR NOAA 11158 obtained with the SOHO/MDI and SDO/HMI. The observations by the latter instrument are characterized by a higher spatial and temporal resolution, as well as higher flux sensitivity, than the ones obtained from SOHO/MDI, which were widely employed in earlier studies. We found that the average and peak values of complexity parameters measured on the two data sets agree within measurement uncertainties. The temporal evolution of the parameters measured on the two data sets show rather similar trends, but the ones derived from the SOHO/MDI observations show larger and spurious variations over time than those deduced from analysis of the corresponding SDO/HMI data. We also found a larger sensitivity of these measurements to characteristics of the data analyzed than reported by earlier studies. In particular, analysis of the higher resolution and higher cadence SDO/HMI data allows us also to detect slight variations of the complexity indicators that cannot be derived from the analysis of the SOHO/MDI data. These variations occur right after the major events in the analyzed AR. They may be the signature of photospheric effects of coronal magnetic field re-arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Abramenko, V.I.: 2005, Multifractal analysis of solar magnetograms. Solar Phys. 228, 29 – 42. 10.1007/s11207-005-3525-9 .

    Article  ADS  Google Scholar 

  • Abramenko, V., Yurchyshyn, V.: 2010, Intermittency and multifractality spectra of the magnetic field in solar active regions. Astrophys. J. 722, 122 – 130. 10.1088/0004-637X/722/1/122 .

    Article  ADS  Google Scholar 

  • Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R.: 2003, Signature of an avalanche in solar flares as measured by photospheric magnetic fields. Astrophys. J. 597, 1135 – 1144. 10.1086/378492 .

    Article  ADS  Google Scholar 

  • Baveye, P., Boast, C.W., Ogawa, S., Parlange, J.Y., Steenhuis, T.: 1998, Influence of image resolution and thresholding on the apparent mass fractal characteristics of preferential flow patterns in field soils. Water Resour. Res. 34, 2783 – 2796. 10.1029/98WR01209 .

    Article  ADS  Google Scholar 

  • Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., Hewett, R.J., Maguire, K.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248, 297 – 309. 10.1007/s11207-007-9074-7 .

    Article  ADS  Google Scholar 

  • Conlon, P.A., McAteer, R.T.J., Gallagher, P.T., Fennell, L.: 2010, Quantifying the evolving magnetic structure of active regions. Astrophys. J. 722, 577 – 585. 10.1088/0004-637X/722/1/577 .

    Article  ADS  Google Scholar 

  • Couvidat, S., Rajaguru, S.P., Wachter, R., Sankarasubramanian, K., Schou, J., Scherrer, P.H.: 2012, Line-of-sight observables algorithms for the helioseismic and magnetic imager (HMI) instrument tested with interferometric bidimensional spectrometer (IBIS) observations. Solar Phys. 278, 217 – 240. 10.1007/s11207-011-9927-y .

    Article  ADS  Google Scholar 

  • Criscuoli, S., Rast, M.P., Ermolli, I., Centrone, M.: 2007, On the reliability of the fractal dimension measure of solar magnetic features and on its variation with solar activity. Astron. Astrophys. 461, 331 – 338. 10.1051/0004-6361:20065951 .

    Article  ADS  MATH  Google Scholar 

  • Criscuoli, S., Romano, P., Giorgi, F., Zuccarello, F.: 2009, Magnetic evolution of superactive regions. Complexity and potentially unstable magnetic discontinuities. Astron. Astrophys. 506, 1429 – 1436. 10.1051/0004-6361/200912044 .

    Article  ADS  Google Scholar 

  • Evertsz, C.J.G., Mandelbrot, B.B.: 1992, Harmonic measure around a linearly self-similar tree. J. Phys. A, Math. Gen. 25, 1781 – 1797. 10.1088/0305-4470/25/7/020 .

    Article  ADS  MathSciNet  Google Scholar 

  • Georgoulis, M.K.: 2005, Turbulence in the solar atmosphere: manifestations and diagnostics via solar image processing. Solar Phys. 228, 5 – 27. 10.1007/s11207-005-2513-4 .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2012, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? Solar Phys. 276, 161 – 181. 10.1007/s11207-010-9705-2 .

    Article  ADS  Google Scholar 

  • Hewett, R.J., Gallagher, P.T., McAteer, R.T.J., Young, C.A., Ireland, J., Conlon, P.A., Maguire, K.: 2008, Multiscale analysis of active region evolution. Solar Phys. 248, 311 – 322. 10.1007/s11207-007-9028-0 .

    Article  ADS  Google Scholar 

  • Janßen, K., Vögler, A., Kneer, F.: 2003, On the fractal dimension of small-scale magnetic structures in the Sun. Astron. Astrophys. 409, 1127 – 1134. 10.1051/0004-6361:20031168 .

    Article  ADS  Google Scholar 

  • Kestener, P., Conlon, P.A., Khalil, A., Fennell, L., McAteer, R.T.J., Gallagher, P.T., Arneodo, A.: 2010, Characterizing complexity in solar magnetogram data using a wavelet-based segmentation method. Astrophys. J. 717, 995 – 1005. 10.1088/0004-637X/717/2/995 .

    Article  ADS  Google Scholar 

  • Lawrence, J.K., Cadavid, A.C., Ruzmaikin, A.A.: 1996, On the multifractal distribution of solar magnetic fields. Astrophys. J. 465, 425. 10.1086/177430 .

    Article  ADS  Google Scholar 

  • Li, Y., Luhmann, J., Fisher, G., Welsch, B.: 2004, Observational evidence for velocity convergence toward magnetic neutral lines as a factor in CME initiation. J. Atmos. Solar-Terr. Phys. 66, 1271 – 1282. 10.1016/j.jastp.2004.03.017 .

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson doppler imager. Solar Phys. 279, 295 – 316.

    Article  ADS  Google Scholar 

  • Mandelbrot, B.B.: 1983, The Fractal Geometry of Nature. Freeman, New York. Revised and enlarged edition.

    Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Conlon, P.A.: 2010, Turbulence, complexity, and solar flares. Adv. Space Res. 45, 1067 – 1074. 10.1016/j.asr.2009.08.026 .

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Statistics of active region complexity: a large-scale fractal dimension survey. Astrophys. J. 631, 628 – 635. 10.1086/432412 .

    Article  ADS  Google Scholar 

  • Meunier, N.: 1999, Fractal analysis of Michelson doppler imager magnetograms: a contribution to the study of the formation of solar active regions. Astrophys. J. 515, 801 – 811. 10.1086/307050 .

    Article  ADS  Google Scholar 

  • Meunier, N.: 2004, Complexity of magnetic structures: flares and cycle phase dependence. Astron. Astrophys. 420, 333 – 342. 10.1051/0004-6361:20034044 .

    Article  ADS  Google Scholar 

  • Norton, A.A., Graham, J.P., Ulrich, R.K., Schou, J., Tomczyk, S., Liu, Y., Lites, B.W., López Ariste, A., Bush, R.I., Socas-Navarro, H., Scherrer, P.H.: 2006, Spectral line selection for HMI: a comparison of Fe i 6173 Å and Ni i 6768 Å. Solar Phys. 239, 69 – 91. 10.1007/s11207-006-0279-y .

    Article  ADS  Google Scholar 

  • Romano, P., Pariat, E., Sicari, M., Zuccarello, F.: 2011, A solar eruption triggered by the interaction between two magnetic flux systems with opposite magnetic helicity. Astron. Astrophys. 525, A13. 10.1051/0004-6361/201014437 .

    Article  ADS  Google Scholar 

  • Sánchez, N., Alfaro, E.J., Pérez, E.: 2005, The fractal dimension of projected clouds. Astrophys. J. 625, 849 – 856. 10.1086/429553 .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I.: 1995, MDI engineering team, the solar oscillations investigation – Michelson doppler imager. Solar Phys. 162, 129 – 188. 10.1007/BF00733429 .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys. 275, 207 – 227. 10.1007/s11207-011-9834-2 .

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Solar Phys. 275, 229 – 259. 10.1007/s11207-011-9842-2 .

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6. 10.12942/lrsp-2011-6 .

    Article  ADS  Google Scholar 

  • Turner, M.J., Blackledge, J.M., Andrews, P.R.: 1998, Fractal Geometry in Digital Imaging. Academic Press, San Diego.

    Google Scholar 

  • Vogelaar, M.G.R., Wakker, B.P.: 1994, Measuring the fractal structure of interstellar clouds. Astron. Astrophys. 291, 557 – 568.

    ADS  Google Scholar 

  • Wachter, R., Schou, J., Rabello-Soares, M.C., Miles, J.W., Duvall, T.L., Bush, R.I.: 2012, Image quality of the helioseismic and magnetic imager (HMI) onboard the solar dynamics observatory (SDO). Solar Phys. 275, 261 – 284. 10.1007/s11207-011-9709-6 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under the grant agreements eHeroes (project n 284461, www.eheroes.eu ) and SOLARNET (n 312495, www.solarnet-east.eu ). This work was also supported by the Istituto Nazionale di Astrofisica (PRIN-INAF-2010). The authors acknowledge useful discussions from Giuseppe Consolini, Aimee Norton, and the Team on Flux Emergence at ISSI, Bern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ermolli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermolli, I., Giorgi, F., Romano, P. et al. Fractal and Multifractal Properties of Active Regions as Flare Precursors: A Case Study Based on SOHO/MDI and SDO/HMI Observations. Sol Phys 289, 2525–2545 (2014). https://doi.org/10.1007/s11207-014-0500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0500-3

Keywords

Navigation