Skip to main content
Log in

Molecular Phylogeny of Deer (Cervidae: Artiodactyla)

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Sequences of mitochondrial genes 12S and 16S rRNA (2445 bp) and the region of the nuclear betaspectrin gene (828 bp) were analyzed in members of the family Cervidae and in some other artiodactyls. Several molecular synapomorphies characteristic both of Cervidae and musk deer have been found. According to our data, Cervidae is a sister clade to Bovidae, which are very close to Moschidae. The family Giraffidae is exterior to this common clade, while Antilocapridae occupies a more basal position. The family Cervidae proper splits into three clades including the genera Cervus and Muntiacus (1), Capreolus, Hydropotes, Alces (2), and Rangifer, Odocoileus, and the remaining genera (3). In general, our phylogenetic reconstructions conform to the results of earlier molecular genetic studies, but substantially differ from the traditional taxonomy of Ruminantia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Gatesy, A. and Arctander, P., Molecular Evidence for the Phylogenetic Affinities of Ruminantia, Antelopes, Deer, and Relatives, Vrba, S. and Shaller, G., Eds., Yale: Yale Univ. Press, 2000, pp. 143–155.

    Google Scholar 

  2. Pavlinov, I.Ya., Sistematika sovremennykh mlekopitayushchikh (Taxonomy of Modern Mammals), Moscow: Mosk. Gos. Univ., 2003.

    Google Scholar 

  3. Sokolov, V.E., Sistematika mlekopitayushchikh (Mammalian Taxonomy), Moscow: Vysshaya Shkola, 1979, vol. 3.

    Google Scholar 

  4. Simpson, G.G., The Principles of Classification and a Classification of Mammals, Bull. Am. Mus. Natl. Hist., 1945, vol. 85, pp. 1–350.

    Google Scholar 

  5. Danilkin, A.A., Mlekopitayushchie Rossii i sopredel’nykh regionov. Olen’i (Cervidae) (Mammals of Russia and Adjacent Regions: Deer (Cervidae)), Moscow: GEOS, 1999.

    Google Scholar 

  6. Flerov, K.K., Moschidae and Cervidae, in Fauna SSSR. Mlekopitayushchie (Fauna of the Soviet Union: Mammals), Moscow: Akad. Nauk SSSR, 1952, vol. 1.

    Google Scholar 

  7. Grubb, P. and Gardner, A.L., List of Species and Subspecies of the Families Tragulidae, Moschidae, and Cervidae, Deer. Status Survey and Conservation Action Plan. IUCN/SSC Deer Specialist Group, Oxford: Inf. Press, 1998, pp. 6–16.

    Google Scholar 

  8. Vislobokova, I.A., Fossil Deer of Eurasia, Tr. Paleontol. Inst., Moscow, 1990, vol. 240.

  9. Groves, C.P. and Grubb, P., Relationships of Living Deer, Biology and Management of the Cervidae, Washington: Smithsonian Inst., 1987, pp. 21–59.

    Google Scholar 

  10. Harrington, R., Evolution and Distribution of the Cervidae: Biology of Deer Production, Bull. R. Soc. N. Z., 1985, no. 22, pp. 3–11.

  11. Miyamoto, M.M., Kraus, F., and Ryder, O.A., Phylogeny and Evolution of Antlered Deer Determined from Mitochondrial DNA Sequences, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, no.16, pp. 6127–6131.

    PubMed  Google Scholar 

  12. Gould, S.J., The Origin and Function of “Bizarre” Structures: Antler Size and Skull Characters in the “Irish Elk” Megaloceros giganteus, Evolution, 1974, vol. 28, pp. 191–220.

    Google Scholar 

  13. Janis, N.M. and Scott, K.M., The Interrelationships of Higher Ruminant Families with Special Emphasis on the Members of the Cervoidea, Am. Mus. Novitates., 1987, vol. 2893, pp. 1–85.

    Google Scholar 

  14. Chikuni, K., Eizirik, E., and Johnson, W.E., Molecular Phylogeny Based on the κ-Casein and Cytochrome B Sequences in the Mammalian Suborder Ruminantia, J. Mol. Evol., 1995, vol. 41, no.6, pp. 859–866.

    Article  PubMed  Google Scholar 

  15. Matthee, C.A., Burzlaff, J.D., Taylor, J.F., and Davis, S.K., Mining the Mammalian Genome for Artiodactyl Systematics, Syst. Biol., 2001, vol. 50, no.3, pp. 367–390.

    Article  PubMed  Google Scholar 

  16. Beintema, J.J., Breukelman, H.J., Dubois, J.Y., and Warmels, H.W., Phylogeny of Ruminants: Secretory Ribonuclease Gene Sequences of Pronghorn (Antilocapra americana), Mol. Phyl. Evol., 2003, vol. 26, no.1, pp. 18–25.

    Article  Google Scholar 

  17. Hassanin, A. and Douzery, E.J., The Tribal Radiation of the Family Bovidae (Artiodactyla) and the Evolution of the Mitochondrial Cytochrome B Gene, Mol. Phyl. Evol., 1999, vol. 13, no.2, pp. 227–243.

    Article  Google Scholar 

  18. Buntjer, J.B., Nijman, I.J., Zijlstra, C., and Lenstra, J.A., A Satellite DNA Element Specific for Roe Deer (Capreolus capreolus), Chromosoma, 1998, vol. 107, no.1, pp. 1–5.

    Article  PubMed  Google Scholar 

  19. Lee, Y.C., Chang, W.S., and Li, S.Y., Isolation and Identification of a Novel Satellite DNA Family Highly Conserved in Several Cervidae Species, Chromosoma, 2002, vol. 111, no.3, pp. 176–183.

    PubMed  Google Scholar 

  20. Potapov, S.G., Tokarskaya, O.N., Semenova, S.K., et al., Diagnostic Value of Multilocus DNA Markers for the Taxonomy of Wild Ungulates (Artiodactyla), Rus. J. Genet., 1997, vol. 33, no.7, pp. 812–817.

    Google Scholar 

  21. Comincini, S., Sironi, M., Bandi, C., et al., RAPD Analysis of Systematic Relationships among the Cervidae, Heredity, 1996, vol. 76, no.3, pp. 215–221.

    PubMed  Google Scholar 

  22. Kraus, F. and Miyamoto, M.M., Rapid Cladogenesis among the Pecora Ruminants: Evidence from Mitochondrial DNA Sequences, Syst. Zool., 1991, vol. 40, pp. 117–130.

    Google Scholar 

  23. Douzery, E. and Randi, E., The Mitochondrial Control Region of Cervidae: Evolutionary Patterns and Phylogenetic Content, Mol. Biol. Evol., 1997, vol. 14, no.11, pp. 1154–1166.

    PubMed  Google Scholar 

  24. Randi, E., Mucci, N., Pierpaoli, M., and Douzery, E., New Phylogenetic Perspectives on the Cervidae (Artiodactyla) Are Provided by the Mitochondrial Cytochrome B Gene, Proc. R. Soc. London, B, 1998, vol. 7, no.265, pp. 793–801.

    Google Scholar 

  25. Su, B., Wang, Y.X., Lan, H., et al., Phylogenetic Study of Complete Cytochrome B Genes in Musk Deer (Genus Moschus) Using Museum Samples, Mol. Phyl. Evol., 1999, vol. 12, no.3, pp. 241–249.

    Article  Google Scholar 

  26. Hassanin, A. and Douzery, E.J., Molecular and Morphological Phylogenies of Ruminantia and the Alternative Position of the Moschidae, Syst. Biol., 2003, vol. 52, no.2, pp. 206–228.

    PubMed  Google Scholar 

  27. Higgins, D.G. and Sharp, P.M., CLUSTAL: A Package for Performing Multiple Sequence Alignment on a Microcomputer, Gene, 1988, vol. 73, pp. 237–244.

    Article  PubMed  Google Scholar 

  28. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4, Sunderland, Mass.: Sinauer Associates, 2000.

    Google Scholar 

  29. Lemmon, A.R. and Milinkovitch, M.C., The Metapopulation Genetic Algorithm: An Efficient Solution for the Problem of Large Phylogeny Estimation, Proc. Natl. Acad. Sci. USA, 2000, no. 99, pp. 10 516–10 521.

  30. Steel, M. and Penny, D., Parsimony, Likelihood, and the Role of Models in Molecular Evolution, Mol. Biol. Evol., 2000, vol. 17, no.6, pp. 839–850.

    PubMed  Google Scholar 

  31. Posada, D. and Crandall, K.A., Modeltest: Testing the Model of DNA Substitution, Bioinformatics, 1998, vol. 14, pp. 818–917.

    Article  Google Scholar 

  32. Felsenstein, J., Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, 1985, vol. 39, pp. 788–791.

    Google Scholar 

  33. Murphu, W.J., Eizirik, E., Johnson, W.E., et al., Moleculare Phylogenetics and the Origins of Placental Mammals, Nature, 2001, vol. 409, no.6820, pp. 614–618.

    Article  PubMed  Google Scholar 

  34. Hiendleder, S., Lewalski, H., Wassmuth, R., and Janke, A., The Complete Mitochondrial DNA Sequence of the Domestic Sheep (Ovis aries) and Comparison with the Other Major Ovine Haplotype, J. Mol. Evol., 1998, vol. 47, no.4, pp. 441–448.

    PubMed  Google Scholar 

  35. Hauswirth, W.W. and Laipis, P.J., Mitochondrial DNA Polymorphism in a Maternal Lineage of Holstein Cows, Proc. Natl. Acad. Sci. USA, 1982, vol. 79, no.15, pp. 4686–4690.

    PubMed  Google Scholar 

  36. Sokolov, V.E. and Prikhod’ko, V.I., Systematics of Moschidae (Artiodastula, Mammalia): Communication 2, Izv. Ross. Akad. Nauk, Ser. Biol., 1998, no. 1, pp. 37–46.

  37. Orlov, V.N. and Bulatova, N.Sh., Sravnitel’naya tsitogenetika i kariosistematika mlekopitayushchikh (Comparative Cytogenetics and Karyotaxonomy of Mammals), Moscow: Nauka, 1983.

    Google Scholar 

  38. Cap, H., Aulagnier, S., and Deleporte, P., The Phylogeny and Behavior of Cervidae (Ruminantia, Pecora), Ethol. and Evolution, 2001, vol. 14, pp. 199–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 7, 2005, pp. 910–918.

Original Russian Text Copyright © 2005 by Kuznetsova, Kholodova, Danilkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, M.V., Kholodova, M.V. & Danilkin, A.A. Molecular Phylogeny of Deer (Cervidae: Artiodactyla). Russ J Genet 41, 742–749 (2005). https://doi.org/10.1007/s11177-005-0154-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0154-1

Keywords

Navigation