Skip to main content
Log in

Dielectric properties of sols of silver nanoparticles capped by alkyl carboxylate ligands

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Sols of silver nanoparticles in toluene were studied by broadband dielectric spectroscopy (10−3–105 Hz). The frequency dependences of the specific alternating current (ac) conductivity and the complex electric modulus were used to estimate the temperature/frequency intervals of long- and short-range charge transfer occurs, respectively. A considerable increase (by more than 30 °C) in the Vogel temperature T 0 and the glass transition temperature T g in sols compared with the pure solvent was found. It can be hypothesized that these cooperative effects reflect the initial stage of the superlattice formation. Although the dielectric characteristics of sols are generally controlled by the conductivity relaxation, the dielectric response was observed in the high-frequency range (1–103 Hz) at low temperatures (from −50 to +10 °C). This response results from the presence of nanoparticles in solution. It is supposed that the relaxation is caused by the motion of ion impurities on the Ag nanoparticle surface within the carboxylate ligands shell. The dielectric properties of films strongly depend on both the characteristics of nanoparticles and the conditions of the film preparation. Like in sols, the direct current (dc) conductivity and the dielectric response of Ag nanoparticles in films are due to ion impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Kuzub, L. M. Bogdanova, T. S. Kurkin, V. I. Torbov, L. I. Guréva, B. A. Rozenberg, P. V. Buzin, in Struktura i dinamika molekulyarnykh sistem (Structure and Dynamics of Molecular Systems), Mari State Technical University, Ioshkar-Ola—Ufa—Kazan’—Moscow, 2009, XVI,ch. 2, p. 134.

    Google Scholar 

  2. B. A. Rozenberg, R. Tenne, Progr. Polym. Sci., 2008, 33, 40.

    Article  CAS  Google Scholar 

  3. A. Henglein, Chem. Rev., 1989, 89, 1861.

    Article  CAS  Google Scholar 

  4. Yu. A. Krutyakov, A. A. Kudrinskii, A. Yu. Olenin, G. V. Lisichkin, Usp. Khim., 2008, 242 [Russ. Chem. Rev. (Engl. Transl.), 2008, 77, 233].

    Google Scholar 

  5. M. Yamamoto, Y. Kashiwagi, M. Nakamoto, Langmuir, 2006, 22, 8581.

    Article  CAS  Google Scholar 

  6. F. Kremer, in Broadband Dielectric Spectroscopy, Ed. A. Schonhals, Springer-Verlag, Berlin, 2003, Ch. 3.

    Google Scholar 

  7. I. A. Chernov, T. R. Deberdeev, G. F. Novikov, R. M. Garipov, V. I. Irzhak, Plasticheskie massy, 2003, No. 8, 5 [Inter. Polym. Sci. Tech. (Engl. Transl.), 2004, 31, No. 5, 17].

  8. N. A. Nikonorova, E. B. Barmatov, D. A. Pebalk, M. A. Barmatova, G. Dommguez-Espinosa, R. Diaz-Calleja, P. Pissis, J. Phys. Chem. C, 2007, 111, 8451.

    Article  CAS  Google Scholar 

  9. P. Hedvig, Dielectric Spectroscopy in Polymers, Adam Hilger, Bristol, England, 1977.

    Google Scholar 

  10. C. Tsonos, L. Apekis, K. Viras, L. Stepanenko, L. Karabanova, L. Sergeeva, Solid State Ion., 2001, 143, 229.

    Article  CAS  Google Scholar 

  11. P. Pissis, A. Kyritsis, Solid State Ion., 1997, 97, 105.

    Article  CAS  Google Scholar 

  12. K. Yamamoto, H. Hamikawa, Jpn J. Appl. Phys., Part 1, 1988, 27, 1845.

    Article  Google Scholar 

  13. G. A. Shandryuk, A. V. Rebrov, R. B. Vasiliev, S. G. Dorofeev, A. S. Merekalov, A. M. Gasíkov, R. V. Talroze, Polym. Sci. B, 2005, 47, 266.

    Google Scholar 

  14. I. D. Raistric, in Impedance Spectroscopy, Ed. J. R. Macdonald, Wiley, New York, 1987, Ch. 2.

    Google Scholar 

  15. K. Miyairi, J. Phys. D, 1986, 19, 1973.

    Article  CAS  Google Scholar 

  16. E. Neagu, P. Pissis, L. Apekis, J. Appl. Phys., 2000, 87, 2914.

    Article  CAS  Google Scholar 

  17. K. N. Fisher, Phys. Status Solidi. B, 1983, 116, 357.

    Article  Google Scholar 

  18. D. Viehland, S. Jang, L. E. Cross, M. Wuttig, Phil. Mag. B., 1991, 64, 335.

    Article  CAS  Google Scholar 

  19. R. Richert, C. A. Angell, J. Chem. Phys., 1998, 108, 9016.

    Article  CAS  Google Scholar 

  20. C. A. Angell, J. Non-Cryst. Solids, 1991, 13, 131.

    Google Scholar 

  21. R. Boehmer, K. L. Ngai, C. A. Angell, D. J. Plazek, J. Chem. Phys., 1993, 99, 4201.

    Article  CAS  Google Scholar 

  22. C. A. Angell, Annu. Rev. Phys. Chem., 1992, 43, 693.

    Article  CAS  Google Scholar 

  23. A. Kh. Vorobév, V. S. Gurman, Yu. B. Kheifets, Vestn. Mosk. Univ., Ser. 2. Khim., 2008, 49, 7 [Vestn. Mosk. Univ., Ser. Khim. (Engl. Transl.), 2008, 49].

    Google Scholar 

  24. M. Murai, H. Nakayama, K. Ishii, J. Therm. Anal. Calor., 2002, 69, 953.

    Article  CAS  Google Scholar 

  25. D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London, 1992.

    Google Scholar 

  26. E. Neagu, P. Pissis, L. Apekis, J. L. Gomes Ribelles, J. Phys. D: Appl. Phys., 1997, 30, 1551.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Novikov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 410–416, March, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, G.F., Gapanovich, M.V., Rabenok, E.V. et al. Dielectric properties of sols of silver nanoparticles capped by alkyl carboxylate ligands. Russ Chem Bull 60, 419–425 (2011). https://doi.org/10.1007/s11172-011-0066-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0066-2

Key words

Navigation