Skip to main content

Advertisement

Log in

A Framework of Effective Science Explanation Videos Informed by Criteria for Instructional Explanations

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Science explanation videos, especially online ones, have become popular. They cover nearly all topics from school science curricula. Teachers use them in a flipped classroom. Students watch them also in their leisure time. However, there is a lack of research on guidelines that effective science explanation videos should follow. The research on instructional explanations provides essential insights into the effectiveness of science explanation videos. The goal of the present article is to develop a framework for effective science explanation videos. The development consists of two steps. First, criteria for a high explaining quality are derived from the research on effective instructional explanations. That leads to a coherent theoretical framework that requires empirical justification. The second step, therefore, is an exploration of the effects of the framework. We developed two explanation videos: one high explaining quality (HE) video following the framework and one low explaining quality (LE) video explicitly not following the framework. Both videos, however, are scientifically correct and provide the same learning opportunities. Students from a German high school assigned to two groups (n = 90; n = 86) watched, respectively, the HE and LE videos, and participated in tests for declarative and conceptual knowledge before and after watching the videos. The main result is that the HE group outperformed the LE group in the achievement of declarative knowledge (Cohen’s d = .42, p = .007). We interpret that as an argument for the validity of the framework of effective science explanation videos presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acuña, S., García-Rodicio, H., & Sánchez, E. (2011). Fostering active processing of instructional explanations of learners with high and low prior knowledge. European Journal of Psychology of Education, 26, 435–452.

    Google Scholar 

  • Altmann, A., & Nückles, M. (2017). Empirische Studie zu Qualitätsindikatoren für den diagnostischen Prozess [empirical studies on quality criteria for a diagnostic process]. In A. Südkamp & A.-K. Praetorius (Eds.), Diagnostische Kompetenz von Lehrkräften: Theoretische und methodische Weiterentwicklungen [Teachers’ diagnostic competence: theoretical and methodological developments] (pp. 134–141). Münster: Waxmann.

  • Alty, J. L., & Coombs, M. J. (1981). Communicating with university computer users: a case study. In M. J. Coombs & J. L. Alty (Eds.), Computing skills and the user interface (pp. 7–71). London: Academic Press.

    Google Scholar 

  • Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: lessons learned. The Journal of the Learning Sciences, 4, 67–207.

    Google Scholar 

  • Beheshti, M., Taspolat, A., Kaya, S. O., & Sapanca, F. H. (2018). Characteristics of instructional videos. World Journal on Educational Technology: Current Issues, 10(1), 061–069.

    Google Scholar 

  • Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 96(5), 808–813.

    Google Scholar 

  • Berland, L. K., & Reiser, B. J. (2008). Making sense of argumentation and explanation. Science Education, 93, 26–55.

    Google Scholar 

  • Brame, C. J. (2016). Effective educational videos: principles and guidelines for maximizing student learning from video content. CBE - Life Sciences Education, 15(4), 1–6.

    Google Scholar 

  • Bishop, J. L., & Verleger, M. (2013). The flipped classroom: a survey of the research, In ASEE National Conference Proceedings (Vol. 30). GA: Atlanta.

    Google Scholar 

  • Champagne, A. B., Klopfer, L. E., & Gunstone, R. F. (1982). Cognitive research and the design of science instruction. Educational Psychologist, 17, 31–53.

    Google Scholar 

  • Charalambous, C. Y., Hill, H. C., & Ball, D. L. (2011). Prospective teachers’ learning to provide instructional explanations: how does it look and what might it take? Journal of Mathematics Teacher Education, 22(1), 9–23.

    Google Scholar 

  • Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human tutoring. Cognitive Science, 25, 471–533.

    Google Scholar 

  • Clark, L. A., & Watson, D. (1995). Constructing validity: basic issues in objective scale development. Psychological Assessment, 7(3), 309–319.

    Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Crossley, S. A., Skalicky, S., Dascalu, M., McNamara, D. S., & Kyle, K. (2017). Predicting text comprehension, processing, and familiarity in adult readers: new approaches to readability formulas. Discourse Processes: A Multidisciplinary Journal, 54, 340–359. https://doi.org/10.1080/0163853X.2017.1296264.

    Article  Google Scholar 

  • DeJong, T. (2010). Cognitive load theory, educational research, and instructional design: some food for thought. Instructional Science: An International Journal of the Learning Sciences, 38(2), 105–134.

    Google Scholar 

  • Duffy, G., Roehler, L., Meloth, M., & Vavrus, L. (1986). Conceptualizing instructional explanation. Teaching and Teacher Education, 2, 197–214.

    Google Scholar 

  • Dutke, S., & Reimer, T. (2000). Evaluation of two types of online help for application software. Journal of Computer-Assisted Learning, 16, 307–315.

    Google Scholar 

  • Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32, 221–233.

    Google Scholar 

  • Gage, N. L. (1968). The microcriterion of effectiveness in explaining. In N. L. Gage (Ed.), Explorations of the teacher's effectiveness in explaining (pp. 1–8) Stanford Center for Research and Development in teaching.

  • Geelan, D. (2012). Teacher explanations. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 987–999). Dordrecht: Springer.

    Google Scholar 

  • Hattie, J. (2009). Visible learning. London: Routledge.

    Google Scholar 

  • Hempel, C., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175.

    Google Scholar 

  • Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539.

    Google Scholar 

  • Kamalski, J., Sanders, T., & Lentz, L. (2008). Coherence marking, prior knowledge and comprehension of informative and persuasive text: Sorting things out. Discourse Processes, 45, 323–345.

    Google Scholar 

  • Kincaid, J. P., Fishburne, R. P., Rogers, R. L., & Chissom, B. S. (1975). Derivation of new readability formulas: (automated readability index, fog count and Flesch Reading ease formula) for navy enlisted personnel. (no. RBR–8–75). Naval Technical Training Command, Millington, TN: Research Branch.

  • Korthagen, F. A. J., & Kessels, J. P. A. M. (1999). Linking theory and practice: changing the pedagogy of teacher education. Educational Researcher, 28(4), 4–17.

    Google Scholar 

  • Kulgemeyer, C., & Peters, C. (2016). Exploring the explaining quality of physics online explanatory videos. European Journal of Physics, 37(6), 1–14.

  • Kulgemeyer, C., & Riese, J. (2018) From professional knowledge to professional performance: The impact of CK and PCK on teaching quality in explaining situations. Journal of Research in Science Teaching, 1–26. https://doi.org/10.1002/tea.21457.

  • Kulgemeyer, C., & Schecker, H. (2009). Kommunikationskompetenz in der Physik: Zur Entwicklung eines domänenspezifischen Kompetenzbegriffs [Communication Competence in Physics: On the development of a domain-specific concept of competence]. Zeitschrift für Didaktik der Naturwissenschaften, 15, 131–153.

  • Kulgemeyer, C., & Schecker, H. (2013). Students explaining science: Assessment of science communication competence. Research in Science Education, 43, 2235–2256.

  • Kulgemeyer, C., & Tomczyszyn, E. (2015). Physik erklären – Messung der Erklärensfähigkeit angehender Physiklehrkräfte in einer simulierten Unterrichtssituation [Explaining physics: Measuring teacher trainees’ explaining skills using a simulated teaching setting]. Zeitschrift für Didaktik der Naturwissenschaften, 21(1), 111–126.

  • Lehman, S., & Schraw, G. (2002). Effects of coherence and relevance on shallow and deep text processing. Journal of Educational Psychology, 94, 738–750.

    Google Scholar 

  • Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38, 43–52.

    Google Scholar 

  • Mayer, R. E., Moreno, R., Boire, M., & Vagge, S. (1999). Maximizing constructivist learning from multimedia communications by minimizing cognitive load. Journal of Educational Psychology, 91, 638–643.

    Google Scholar 

  • Moreno, R. (2010). Cognitive load theory: more food for thought. Instructional Science: An International Journal of the Learning Sciences, 38(2), 135–141.

    Google Scholar 

  • Muller, D. (2008). Designing effective multimedia for physics education. PhD Thesis, School of Physics, University of Sydney, Australia.

  • Nathan, M., & Petrosino, A. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40(4), 905–928.

    Google Scholar 

  • Nielsen, W., & Hoban, G. (2015). Designing a digital teaching resource to explain phases of the moon: a case study of preservice elementary teachers making a Slowmation. Journal of Research in Science Teaching, 52(9), 1207–1233.

    Google Scholar 

  • Mayer, R. (Ed.). (2014). The Cambridge handbook of multimedia learning (2nd ed.). New York: The Cambridge University Press.

    Google Scholar 

  • Paivio, A. (1986). Mental representations: a dual coding approach, Oxford psychology series, New York: Oxford University press. Clarendon Press.

  • Papadouris, N., Vokos, S., & Constantinou, C. (2017). The pursuit of a “better” explanation as an organizing framework for science teaching and learning. Science Education, 102, 219–237.

    Google Scholar 

  • Pekdag, B., & Le Marechal, J. F. (2010). Movies in chemistry education. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1–19.

    Google Scholar 

  • Renkl, A., Wittwer, J., Große, C., Hauser, S., Hilbert, T., Nückles, M., & Schworm, S. (2006). Instruktionale Erklärungen beim Erwerb kognitiver Fertigkeiten: sechs Thesen zu einer oft vergeblichen Bemühung [Instructional explanations and the achievement in cognitive skills: Six hypotheses on a failing attempt]. In I. Hosenfeld (Ed.): Schulische Leistung. Grundlagen, Bedingungen, Perspektiven [Achievement in schools. Models, conditions, perspectives] (pp. 205–223). Münster, Germany: Waxmann.

  • Rescher, N. (1962). The stochastic revolution and the nature of scientific explanation. Synthese, 14, 200–215.

    Google Scholar 

  • Roelle, J., Berthold, K., & Renkl, A. (2014). Two instructional aids to optimise processing and learning from instructional explanations. Instructional Science, 42, 207–228.

    Google Scholar 

  • Sánchez, E., García Rodicio, H., & Acuña, S. R. (2009). Are instructional explanations more effective in the context of an impasse? Instructional Science, 37, 537–563.

    Google Scholar 

  • Schmidt, S. M. P., & Ralph, D. L. (2016). The flipped classroom: a twist on teaching. Contemporary Issues in Education Research, 9(1), 1–6. Retrieved from https://eric.ed.gov/?q=schmidt+ralph+flipped&id=EJ1087603. Accessed 6 Nov 2018.

  • Schmidt-McCormack, J. A., Muniz, M. N., Keuter, E. C., Shaw, S. K., & Cole, R. S. (2017). Design and implementation of instructional videos for upper-division undergraduate laboratory courses. Chemistry Education Research and Practice, 18(4), 749–762. https://doi.org/10.1039/c7rp00078b.

    Article  Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156.

    Google Scholar 

  • Schroeder, N. L., & Traxler, A. L. (2017). Humanizing instructional videos in physics: when less is more. Journal of Science Education and Technology, 26(3), 269–278. https://doi.org/10.1007/s10956-016-9677-6.

    Article  Google Scholar 

  • Seidel, T., Blomberg, G., & Renkl, A. (2013). Instructional strategies for using video in teacher education. Teaching and Teacher Education, 34, 56–65.

    Google Scholar 

  • Sevian, H., & Gonsalves, L. (2008). Analysing how scientists explain their research: a rubric for measuring the effectiveness of scientific explanations. International Journal of Science Education, 30(11), 1441–1467.

    Google Scholar 

  • Sorden, S. (2013). The cognitive theory of multimedia learning. In B. Irby, G. Brown, R. Lara-Alecio, & S. Jackson (Eds.), The handbook of educational theories (pp. 155–168). Charlotte: Information Age.

    Google Scholar 

  • Stockwell, B. R., Stockwell, M. S., Cennamo, M., & Jiang, E. (2015). Blended learning improves science education. Cell, 162(5), 933–936.

    Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12(2), 257–285.

    Google Scholar 

  • Sweller, J., & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8, 351–362.

    Google Scholar 

  • Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29(7), 853–870.

    Google Scholar 

  • Thomson, A., Bridgstock, R., & Willems, C. (2014). “Teachers flipping out” beyond the online lecture: maximising the educational potential of video. Journal of Learning Design, 7(3), 67–78.

    Google Scholar 

  • Treagust, D., & Harrison, A. (1999). The genesis of effective science explanations for the classroom. In J. Loughran (Ed.), Researching teaching: methodologies and practices for understanding pedagogy (pp. 28–43). Abingdon: Routledge.

    Google Scholar 

  • Webb, N. M., Ing, M., Kersting, N., & Nemer, K. M. (2006). Help seeking in cooperative learning groups. In S. A. Karabenick & R. S. Newman (Eds.), Help seeking in academic settings: goals, groups, and contexts (pp. 45–88). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Wittwer, J., & Ihme, N. (2014). Reading skill moderates the impact of semantic similarity and causal specificity on the coherence of explanations. Discourse Processes, 51, 143–166.

    Google Scholar 

  • Wittwer, J., Nückles, M., Landmann, N., & Renkl, A. (2010). Can tutors be supported in giving effective explanations? Journal of Educational Psychology, 102, 74–89.

    Google Scholar 

  • Wittwer, J., & Renkl, A. (2008). Why instructional explanations often do not work: a framework for understanding the effectiveness of instructional explanations. Educational Psychologist, 43(1), 49–64.

    Google Scholar 

  • Wolf, K., & Kratzer, V. (2015). Erklärstrukturen in selbsterstellten Erklärvideos von Kindern [Explaining structures in pupils’ self-made explanation videos.]. In K. Hugger, A. Tillmann, S. Iske, J. Fromme, P. Grell & T. Hug (Eds.), Jahrbuch Medienpädagogik 12 [Yearbook media pedagogy] (pp. 29–44) Springer.

  • Wolf, K., & Kulgemeyer, C. (2016). Lernen mit Videos? Erklärvideos im Physikunterricht [Learning with videos? Explanation videos in physics teaching.]. Naturwissenschaften Im Unterricht Physik, 27(152), 36–41.

  • Wolf, K. (2018). Video statt Lehrkraft? Erklärvideos als didaktisches element im Unterricht [Video replacing teachers? Explanation videos as part of instruction]. Computer + Unterricht, 109, 4-7.

  • Zhang, D., Zhou, L., Briggs, R. O., & Nunamaker, J. F. (2006). Instructional video in e-learning: assessing the impact of interactive video on learning effectiveness. Information & Management, 43(1), 15–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kulgemeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulgemeyer, C. A Framework of Effective Science Explanation Videos Informed by Criteria for Instructional Explanations. Res Sci Educ 50, 2441–2462 (2020). https://doi.org/10.1007/s11165-018-9787-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-018-9787-7

Keywords

Navigation