Skip to main content
Log in

Conceptual Incoherence as a Result of the use of Multiple Historical Models in School Textbooks

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

This paper explores the occurrence of conceptual incoherence in upper secondary school textbooks resulting from the use of multiple historical models. Swedish biology and chemistry textbooks, as well as a selection of books from English speaking countries, were examined. The purpose of the study was to identify which models are used to represent the phenomenon of gene function in textbooks and to investigate how these models relate to historical scientific models and subject matter contexts. Models constructed for specific use in textbooks were identified using concept mapping. The data were further analyzed by content analysis. The study shows that several different historical models are used in parallel in textbooks to describe gene function. Certain historical models were used more often then others and the most recent scientific views were rarely referred to in the textbooks. Hybrid models were used frequently, i.e. most of the models in the textbooks consisted of a number of components of several historical models. Since the various historical models were developed as part of different scientific frameworks, hybrid models exhibit conceptual incoherence, which may be a source of confusion for students. Furthermore, the use of different historical models was linked to particular subject contexts in the textbooks studied. The results from Swedish and international textbooks were similar, indicating the general applicability of our conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • American Association for the Advancement of Science. (1990). Science for all Americans. New York: Oxford University Press.

    Google Scholar 

  • American Association for the Advancement of Science. (1993). Benchmarks for science literacy: A Project 2061 report. New York: Oxford University Press.

    Google Scholar 

  • Andersson, S., Sonesson, A., Stålhandske, B., Tullberg, A., & Rydén, L. (2001). Gymnasiekemi B. Falköping: Liber AB.

    Google Scholar 

  • Borén, B., Larsson, M., Lif, L., Lillieborg, S., & Lindh, B. (2001). Kemiboken B. Borås: Liber AB.

    Google Scholar 

  • Chinn, A. C., & Samarapungavan, A. (2008). Learning to use scientific models: Multiple dimensions of conceptual change. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry (pp. 191–225). Rotterdam: Sense.

    Google Scholar 

  • Dawkins, R. (1989). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • DiGisi, L. L., & Wilett, J. B. (1995). What high school biology teachers say about their textbook use: a descriptive study. Journal of Research in Science Teaching, 32(2), 123–142. doi:10.1002/tea.3660320204.

    Article  Google Scholar 

  • Di Giuseppe, M., Vavitas, A., Ritter, B., Fraser, D., Arora, A., & Lisser, B. (2003). Nelson biology 12. Toronto: Nelson Thomson Learning.

    Google Scholar 

  • Duit, R., & Treagust, D. F. (2003). Learning in science—From behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 3–25). Dordrect: Kluwer Academic.

    Google Scholar 

  • Duschl, R. A. (2006). Relating history of science to learning and teaching science. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science—Implications for teaching, learning, and teacher education (pp. 319–330). Dordrecht: Springer.

    Google Scholar 

  • Engström, C., Backlund, P., Berger, R., & Grennberg, H. (2001). Kemi B temaboken. Aarhus: Bonnier Utbildning.

    Google Scholar 

  • Evans, B., Ladiges, P., McKenzie, J., Batterham, P., & Sanders, Y. (2005a). Heinemann biology 2 (4th ed.). Melbourne: Harcourt Education.

    Google Scholar 

  • Evans, B., Ladiges, P., McKenzie, J., & Sanders, Y. (2005b). Heinemann biology 1 (4th ed.). Melbourne: Harcourt Education.

    Google Scholar 

  • Falk, R. (2000). The gene—A concept in tension. In P. Beurton, R. Falk & H. J. Rheinberger (Eds.), The concept of the gene in development and evolution: Historical and epistemological perspectives (pp. 317–348). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Fogle, T. (2000). The dissolution of protein coding genes in molecular biology. In P. Beurton, R. Falk & H. J. Rheinberger (Eds.), The concept of the gene in development and evolution: Historical and epistemological perspectives (pp. 3–25). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881.

    Article  Google Scholar 

  • Gerstein, M. B., Bruce, B., Rozowsky, J. S., et al. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17, 669–681. doi:10.1101/gr.6339607.

    Article  Google Scholar 

  • Giere, R. N. (1988). Explaining science. Chicago: The University of Chicago Press.

    Google Scholar 

  • Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, part 1: horses for courses? International Journal of Science Education, 20(1), 83–97. doi:10.1080/0950069980200106.

    Article  Google Scholar 

  • Gilbert, J. K., Pietrocola, M., Zylbersztajn, A., & Franco, C. (2000). Science and education: Notions of reality, theory and model. In J. K. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 343–362). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Griffiths, P. E., & Neumann-Held, E. N. (1999). The many faces of the gene. Bioscience, 49, 656–662. doi:10.2307/1313441.

    Article  Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science; conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822. doi:10.1002/tea.3660280907.

    Article  Google Scholar 

  • Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (eds). (2005). Salters-Nuffield advanced biology AS. Oxford: Harcourt Educational Limited.

    Google Scholar 

  • Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (eds). (2006). Salters–Nuffield advanced biology A2. Oxford: Harcourt Educational Limited.

    Google Scholar 

  • Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Henriksson, A. (2000). Biologi kurs A. Malmö: Gleerups Förlag.

    Google Scholar 

  • Henriksson, A. (2002a). Biologi kurs B. Malmö: Gleerups Förlag.

    Google Scholar 

  • Henriksson, A. (2002b). Kemi kurs B. Malmö: Gleerups Förlag.

    Google Scholar 

  • Johnsen, E. G. (1993). Textbooks in the Kaleidoscope; A critical survey of literature and research on educational texts. Oslo: Scandinavian University Press.

    Google Scholar 

  • Juhlin Svensson, A.-C. (2000). Nya redskap för lärande—Studier av lärares val och användning av läromedel i gymnasieskolan. Studies in Educational Sciences 23. Stockholm: HLS Förlag.

    Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (2000). History and philosophy of science through models: some challenges in the case of “the atom”. International Journal of Science Education, 22(9), 993–1009. doi:10.1080/095006900416875.

    Article  Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386. doi:10.1080/0950069032000070324.

    Article  Google Scholar 

  • Karlsson, J., Krigsman, T., Molander, B.-O., & Wickman, P.-O. (2000). Biologi A med naturkunskap. Trelleborg: Liber AB.

    Google Scholar 

  • Karlsson, J., Molander, B.-O., & Wickman, P.-O. (2001). Biologi B. Trelleborg: Liber AB.

    Google Scholar 

  • Knain, E. (2001). Ideologies in school science textbooks. International Journal of Science Education, 23(3), 319–329. doi:10.1080/095006901750066547.

    Article  Google Scholar 

  • Lambert, D. (1999). Exploring the use of textbooks in Key Stage 3 geography classrooms: a small-scale study. Curriculum Journal, 10(1), 85–105.

    Google Scholar 

  • Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: a review of the research. Journal of Research in Science Teaching, 29(4), 331–359. doi:10.1002/tea.3660290404.

    Article  Google Scholar 

  • Leonard, W. H., & Penick, J. E. (2003). Biology a community in context. New York: Glencoe McGraw-Hill.

    Google Scholar 

  • Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195–206. doi:10.1080/0950069032000072782.

    Article  Google Scholar 

  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes?—Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74–79.

    Google Scholar 

  • Ljunggren, L., Söderberg, B., & Åhlin, S. (2000). Liv i utveckling A: biologi gymnasieskolan. Örebro: Natur och Kultur.

    Google Scholar 

  • Ljunggren, L., Söderberg, B., & Åhlin, S. (2001). Liv i utveckling B: biologi gymnasieskolan. Örebro: Natur och Kultur.

    Google Scholar 

  • Marbach-Ad, G. (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.

    Google Scholar 

  • Moody, D. E. (2000). The paradox of the textbook. In K. M. Fisher, J. H. Wandersee & D. E. Moody (Eds.), Mapping biology knowledge (pp. 167–184). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks: Sage.

    Google Scholar 

  • Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2000). Biologi A. Stockholm: Bonnier utbildning AB.

    Google Scholar 

  • Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2001). Biologi B. Stockholm: Bonnier utbildning AB.

    Google Scholar 

  • Pilström, H., Nordlund, S., Lüning, B., & Wahlström, E. (2001). Modell och verklighet B. Falköping: Natur och Kultur.

    Google Scholar 

  • Ritter, B., Adam-Carr, C., & Fraser, D. (2002). Nelson biology 11. Toronto: Nelson Thomson Learning.

    Google Scholar 

  • Shymansky, J. A., Yore, L. D., & Good, R. (1991). Elementary school teachers’ beliefs about and perceptions of elementary school science, science reading, science textbooks, and supportive instructional factors. Journal of Research in Science Teaching, 28, 437–454. doi:10.1002/tea.3660280507.

    Article  Google Scholar 

  • The Swedish National Agency for Education. (2008a). Steering documents, Programme maual—Programme goal and structures, core subjects, subject index for upper secondary school. Retrieved November 12, 2008, available at: http://www.skolverket.se/sb/d/493/a/1306

  • The Swedish National Agency for Education. (2008b). Steering documents, Goals for the subject of biology to aim for. Retrieved November 12, 2008, available at: http://www3.skolverket.se/ki03/front.aspx?sprak=EN&ar=0809&infotyp=8&skolform=21&id=BI&extraId=

  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368. doi:10.1080/09500690110066485.

    Article  Google Scholar 

  • Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153. doi:10.1080/095006999290110.

    Article  Google Scholar 

  • Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031–1055. doi:10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E.

    Article  Google Scholar 

  • Wandersee, J. H. (2000). Using concept maps as a knowledge mapping tool. In K. M. Fisher, J. H. Wandersee & D. E. Moody (Eds.), Mapping biology knowledge (pp. 127–142). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Wennberg, G. (1990). Geografi och skolgeografi; ett ämnes förändringar. Uppsala: Acta Universitatis Upsaliensis, Uppsala Studies in Education.

    Google Scholar 

  • Yore, L. D. (1991). Secondary science teachers’ attitudes toward and beliefs about science reading and science textbooks. Journal of Research in Science Teaching, 28, 55–72. doi:10.1002/tea.3660280106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas M. Gericke.

Appendices

Appendix A

Categorization of Textbook Models According to Historical Model-Categories and their Level of Hybridization

Table 4

Appendix B

The Textbook Models in Relation to Model-Categories and Subject Matter Contexts

Table 5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gericke, N.M., Hagberg, M. Conceptual Incoherence as a Result of the use of Multiple Historical Models in School Textbooks. Res Sci Educ 40, 605–623 (2010). https://doi.org/10.1007/s11165-009-9136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-009-9136-y

Keywords

Navigation