Skip to main content

Advertisement

Log in

Cobalt phosphide nanocages encapsulated with graphene as ultralong cycle life anodes for reversible lithium storage

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Transition-metal phosphides (TMPs) have emerged as anode materials for lithium-ion batteries owing to their high theoretical capacity and stable cyclability. Moreover, by increasing the content of P in TMPs, their lithium storage performance can be further improved. However, the decreased electrical conductivity caused by continuous increment of the P doping into metal and the large volume change during the lithiation/delithiation process limit the electrical energy storage applications of such materials. The combination of the advantages of graphene and a hollow structure is regarded as an approach to solve these issues. In this work, CoP nanocages wrapped by reduced graphene oxide (CoP@RGO) were fabricated via a template-based method followed by a low-temperature phosphating process. Such a unique structure can not only accommodate the volume change during the lithiation/delithiation process but also improve the electric conductivity of the CoP nanocages. The obtained CoP@RGO nanocages exhibited remarkable stable capacity of 546.6 mA h g−1 at current density of 100 mA g−1 over 500 cycles (or 460.4 mA h g−1 at current density of 500 mA g−1 over 500 cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 7787, 43 (2014)

    Google Scholar 

  2. M. Fontecave, Angew. Chem. Int. Ed. 6704, 50 (2011)

    Google Scholar 

  3. C. Lv, Z. Chen, Z. Chen, B. Zhang, Y. Qin, Z. Huang, C. Zhang, J. Mater. Chem. A 17669, 3 (2015)

    Google Scholar 

  4. J. Li, X. Zhou, Z. Xia, Z. Zhang, J. Li, Y. Ma, Y. Qu, J. Mater. Chem. A 13066, 3 (2015)

    Google Scholar 

  5. B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing, J. Zhang, Angew. Chem. 2728, 12 (2017)

    Google Scholar 

  6. B. Qiu, Q. Zhu, M. Xing, J. Zhang, Chem. Commun. 897, 53 (2017)

    Google Scholar 

  7. M. Xing, B. Qiu, M. Du, Q. Zhu, L. Wang, J. Zhang, Adv. Funct. Mater. 1702624, 27 (2017)

    Google Scholar 

  8. Y. Lu, T. Wang, X. Li, G. Zhang, H. Xue, H. Pang, RSC Adv. 87188, 6 (2016)

    Google Scholar 

  9. B. Qiu, M. Xing, J. Zhang, J. Am. Chem. Soc. 5852, 136 (2014)

    Google Scholar 

  10. B. Qiu, Q. Li, B. Shen, M. Xing, J. Zhang, Appl. Catal. B Environ. 216, 183 (2016)

    Google Scholar 

  11. B. Qiu, Y. Deng, M. Du, M. Xing, J. Zhang, Sci. Rep. 29099, 6 (2016)

    Google Scholar 

  12. B. Qiu, M. Xing, J. Zhang, J. Mater. Chem. A 12820, 3 (2015)

    Google Scholar 

  13. E. Zhao, X. Yu, F. Wang, H. Li, Sci. China Chem. 1483, 60 (2017)

    Google Scholar 

  14. X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, Y.G. Guo, L.J. Wan, Sci. China Chem. 1554, 60 (2017)

    Google Scholar 

  15. N. Li, K. Gan, D. Lu, J. Zhang, L. Wang, Res. Chem. Intermed. 1105, 44 (2017)

    Google Scholar 

  16. L. Ma, X. Xi, K. Wang, L. Zhao, Res. Chem. Intermed. (2018). https://doi.org/10.1007/s11164-018-3518-6

    Article  Google Scholar 

  17. Y. Wang, L. Shi, H. Zhou, Z. Wang, R. Li, J. Zhu, Z. Qiu, Y. Zhao, M. Zhang, S. Yuan, Electrochim. Acta 386, 259 (2018)

    Google Scholar 

  18. S. Wang, L. Shi, G. Chen, C. Ba, Z. Wang, J. Zhu, Y. Zhao, M. Zhang, S. Yuan, ACS Appl. Mater. Int. 17163, 9 (2017)

    Google Scholar 

  19. M. Fan, Y. Chen, Y. Xie, T. Yang, X. Shen, N. Xu, H. Yu, C. Yan, Adv. Funct. Mater. 5019, 26 (2016)

    Google Scholar 

  20. C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A.M. Asiri, X. Sun, Adv. Mater. 1602441, 29 (2017)

    Google Scholar 

  21. Z.H. Xue, H. Su, Q.Y. Yu, B. Zhang, H.H. Wang, X.H. Li, J.S. Chen, Adv. Energy Mater. 1602355, 7 (2017)

    Google Scholar 

  22. Y. Shi, B. Zhang, Chem. Soc. Rev. 1529, 45 (2016)

    Google Scholar 

  23. Y.Z. Sun, J.Q. Huang, C.Z. Zhao, Q. Zhang, Sci. China Chem. 1508, 60 (2017)

    Google Scholar 

  24. D.S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J.S. Yu, J. Am. Chem. Soc. 16127, 134 (2012)

    Google Scholar 

  25. V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phys. Chem. Chem. Phys. 13921, 17 (2015)

    Google Scholar 

  26. B. Qiu, M. Xing, J. Zhang, Chem. Soc. Rev. 2165, 47 (2018)

    Google Scholar 

  27. Y. Lu, J. Chen, Sci. China Chem. 1533, 60 (2017)

    Google Scholar 

  28. C. Ba, L. Shi, Z. Wang, G. Chen, S. Wang, Y. Zhao, M. Zhang, S. Yuan, Res. Chem. Intermed. 43, 5857 (2017)

    Article  CAS  Google Scholar 

  29. X. Jia, Y. Kan, X. Zhu, G. Ning, Y. Lu, F. Wei, Nano Energy 344, 10 (2014)

    Google Scholar 

  30. P. Lou, Z. Cui, Z. Jia, J. Sun, Y. Tan, X. Guo, ACS Nano 3705, 11 (2017)

    Google Scholar 

  31. J. Yang, Y. Zhang, C. Sun, H. Liu, L. Li, W. Si, W. Huang, Q. Yan, X. Dong, Nano Res. 612, 9 (2016)

    Google Scholar 

  32. Y. Bai, H. Zhang, X. Li, L. Liu, H. Xu, H. Qiu, Y. Wang, Nanoscale 1446, 7 (2015)

    Google Scholar 

  33. Q. Li, J. Ma, H. Wang, X. Yang, R. Yuan, Y. Chai, Electrochim. Acta 201, 213 (2016)

    Article  Google Scholar 

  34. J.F. Callejas, J.M. McEnaney, C.G. Read, J.C. Crompton, A.J. Biacchi, E.J. Popczun, T.R. Gordon, N.S. Lewis, R.E. Schaak, ACS Nano 11101, 8 (2014)

    Google Scholar 

  35. A. Ueda, M. Nagao, A. Inoue, A. Hayashi, Y. Seino, T. Ota, M. Tatsumisago, J. Power Sources 597, 244 (2013)

    Google Scholar 

  36. M.C. Stan, R. Klöpsch, A. Bhaskar, J. Li, S. Passerini, M. Winter, Adv. Energy Mater. 231, 3 (2013)

    Google Scholar 

  37. S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, D. Wang, Energy Environ. Sci. 632, 7 (2014)

    Google Scholar 

  38. X. Wang, P. Sun, J. Qin, J. Wang, Y. Xiao, M. Cao, Nanoscale 10330, 8 (2016)

    Google Scholar 

  39. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 187, 9 (2014)

    Google Scholar 

  40. L. Zhou, D. Zhao, X.W. Lou, Adv. Mater. 745, 24 (2012)

    Google Scholar 

  41. J. Zhou, X. Liu, W. Cai, Y. Zhu, J. Liang, K. Zhang, Y. Lan, Z. Jiang, G. Wang, Y. Qian, Adv. Mater. 170214, 29 (2017)

    Google Scholar 

  42. X. Guan, J. Nai, Y. Zhang, P. Wang, J. Yang, L. Zheng, J. Zhang, L. Guo, Chem. Mater. 5958, 26 (2014)

    Google Scholar 

  43. J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, P. Chen, Small 1700798, 13 (2017)

    Google Scholar 

  44. Y.P. Zhu, Y.P. Liu, T.Z. Ren, Z.Y. Yuan, Adv. Funct. Mater. 7337, 25 (2015)

    Google Scholar 

  45. J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu, W. Xing, ACS Catal. 6874, 5 (2015)

    Google Scholar 

  46. B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang, H. Xue, H. Pang, Adv. Funct. Mater. 1605784, 27 (2017)

    Google Scholar 

  47. M. Xu, L. Han, Y. Han, Y. Yu, J. Zhai, S. Dong, J. Mater. Chem. A 21471, 3 (2015)

    Google Scholar 

  48. X. Ge, Z. Li, L. Yin, Nano Energy 117, 32 (2017)

    Google Scholar 

  49. X.Y. Yu, H. Hu, Y. Wang, H. Chen, X.W.D. Lou, Angew. Chem. Int. Ed. 7395, 54 (2015)

    Google Scholar 

  50. S.-O. Kim, A. Manthiram, ACS Appl. Mater. Interfaces 16221, 9 (2017)

    Google Scholar 

  51. Y. Lu, T.J. Tu, Q. Xiong, J. Xiang, Y. Mai, J. Zhang, Y. Qiao, X. Wang, C. Gu, X. Mao Scott, Adv. Funct. Mater. 3927, 22 (2012)

    Google Scholar 

  52. R.P. Qing, J.L. Shi, D.D. Xiao, X.D. Zhang, Y.X. Yin, Y.B. Zhai, L. Gu, Y.G. Guo, Adv. Energy Mater. 1501914, 6 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21773062, 21577036, 21377038, 5171101651), State Key Research Development Program of China (2016YFA0204200), Shanghai Education Development Foundation and Shanghai Municipal Education Commission (16JC1401400), Shanghai Pujiang Program (17PJD011), and Fundamental Research Funds for the Central Universities (22A201514021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyang Xing or Jinlong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Qiu, B., Zhu, Q. et al. Cobalt phosphide nanocages encapsulated with graphene as ultralong cycle life anodes for reversible lithium storage. Res Chem Intermed 44, 7847–7859 (2018). https://doi.org/10.1007/s11164-018-3590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3590-y

Keywords

Navigation