Skip to main content
Log in

Fractal Model of a Compact Intracloud Discharge. I. Features of the Structure and Evolution

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a new model of a compact intracloud discharge considered as the result of interaction between two (or more) bipolar streamer structures formed in a strong large-scale electric field of a thundercloud. The model assumes two stages of the compact discharge development. At the preliminary stage, two or more bipolar streamer structures appear successively in the thundercloud in the region of a strong electric field (at the boundaries between the regions of the main positive and the main negative electric charges or between the main positive charge region and the top negative screening layer). The time of development of such structures is determined by the characteristics of the conducting channels that form them and can reach tens of milliseconds. Spatiotemporal synchronization of the bipolar streamer structures is provided by the altitude modulation of the electric field, which, in particular, can originate from a large-scale turbulence of the cloud medium or the stream instability. It is shown that a single bipolar streamer structure accumulates significant electric charges of different signs at its ends as it develops. The start of the main stage of a compact intracloud discharge corresponds to the occurrence of the conducting channel (breakdown of the gap) between the mature streamer structures. The electric charge accumulated at the adjacent ends of the structures at this stage is neutralized over a time much shorter than the duration of the preliminary stage. The parameters of the current pulse are in good agreement with the estimates of the current of a compact intracloud discharge which were obtained in the transmission-line approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Le Vine, J. Geophys. Res., 85, No. C7, 4091 (1980).

    Article  ADS  Google Scholar 

  2. J.C. Willett, J.C. Bailey, and E. P.Krider, J. Geophys. Res., 94, No. D13, 16255 (1989).

    Article  ADS  Google Scholar 

  3. P. J. Medelius, E. M.Thomson, and E.M.Pierce, in: Proc. Int. Aerospace and Ground Conf. Lightning and Static Electr., NASA Conf. Publ., 1991, Vol. 3106, p. 12-1.

  4. D. N. Holden, C.P.Munson, and J.C. Devenport, Geophys. Res. Lett ., 22, No. 8, 889 (1995).

    Article  ADS  Google Scholar 

  5. R. S. Massey and D. N. Holden, Radio Sci ., 30, No. 5, 1645 (1995).

    Article  ADS  Google Scholar 

  6. R. S. Massey, D. N. Holden, and X. M. Shao, Radio Sci ., 33, No. 3, 1755 (1998).

    Article  ADS  Google Scholar 

  7. D. A. Smith and D. N. Holden, Radio Sci ., 31, No. 3, 553 (1996).

    Article  ADS  Google Scholar 

  8. D. A. Smith, X. M. Shao, D. N. Holden, et al., J. Geophys. Res., 104, No. D4, 4189 (1998).

    Article  ADS  Google Scholar 

  9. D. A. Smith, R. S. Massey, K.C. Wiens, et al., in: H. Christian, ed., Proc. 11th Int. Conf. Atmos. Electr., NASA Conf. Publ., 1999, CP-1999-209261, p. 6.

  10. W.Rison, R. J.Thomas, P.R.Krehbiel, et al., Geophys. Res. Lett ., 26, No. 23, 3573 (1999).

    Article  ADS  Google Scholar 

  11. R. J.Thomas, P.N.Krehbiel, W.Rison, et al., Geophys. Res. Lett ., 28, No. 1, 143 (2001).

    Article  ADS  Google Scholar 

  12. A.R. Jacobson, S.O.Knox, R. Franz, and D.C.Enemark, Radio Sci ., 34, No. 2, 337 (1999).

    Article  ADS  Google Scholar 

  13. A.R. Jacobson, K. L.Cummins, M.Carter, et al., J. Geophys. Res., 105, No. D12, 15653 (2000).

    Article  ADS  Google Scholar 

  14. D. A. Smith, D. A. Eack, J.Harlin, et al., J. Geophys. Res., 107, No. D13, 4183 (2002).

    Article  Google Scholar 

  15. K. L. Cummins, M. J.Murphy, E.A..Bardo, et al., J. Geophys. Res., 103, No. D8, 9035 (1998).

    Article  ADS  Google Scholar 

  16. A.R. Jacobson and T.E. L. Light, J. Geophys. Res., 108, No. D9, 4266 (2003).

    Article  Google Scholar 

  17. D. A. Smith, M. J. Heavner, A. R. Jacobson, et al., Radio Sci ., 39, No. 1, RS1010 (2004).

    Article  ADS  Google Scholar 

  18. A.R. Jacobson, J. Geophys. Res., 108, No. D24, 4778 (2003).

    Google Scholar 

  19. T.E. L. Light and A.R. Jacobson, J. Geophys. Res., 107, No. D24, 4756 (2002).

    Article  Google Scholar 

  20. A.R. Jacobson and T.E.L. Light, Ann. Geophys., 30, No. 2, 389 (2012).

    Article  ADS  Google Scholar 

  21. A.R. Jacobson, R.H.Holzworth, and X.-M. Shao, Ann. Geophys., 29, 1587 (2011).

    Article  ADS  Google Scholar 

  22. K. B. Eack, Geophys. Res. Lett ., 31, No. 20, L20102 (2004).

    Article  ADS  Google Scholar 

  23. K.C. Wiens, T.Hamlin, J.Harlin, and D. M. Suszcynsky, J. Geophys. Res., 113, D05201 (2008).

    ADS  Google Scholar 

  24. A.R. Jacobson and M. J.Heavner, Mon. Weather Rev., 133, No. 5, 1144 (2005).

    Article  ADS  Google Scholar 

  25. S. R. Sharma, M.Fernando, and V. Cooray, J. Atmos. Sol. Terr. Phys., 70, 1251 (2008).

    Article  ADS  Google Scholar 

  26. F.Lu, B.Zhu, H.Zhou, et al., J. Geophys. Res. Atmos., 118, 4458 (2013).

    Article  ADS  Google Scholar 

  27. A. Nag, V. A. Rakov, D.Tsalikis, and J. A.Cramer, J. Geophys. Res., 115, D14115 (2010).

    Article  ADS  Google Scholar 

  28. S. Karunarathe, T. C.Marshall, M. Stolzenburg, and N.Karunarathna, in: Proc. 15th Int. Conf. Atmos. Electr., Norman, Oklahoma, USA, 2014, P-02-05.

  29. T.Wu, W.Dong, Y. Zhang, and T.Wang, J. Geophys. Res., 116, D03111 (2011).

    ADS  Google Scholar 

  30. R.Thottappillil, V. A. Rakov, and M.A.Uman, J. Geophys. Res., 95, No. D11, 18631 (1990).

    Article  ADS  Google Scholar 

  31. V. A. Rakov, R.Thottappillil, and M.A.Uman, J. Geophys. Res., 97, No. D9, 9935 (1992).

    Article  ADS  Google Scholar 

  32. B. Zhu, H. Zhou, R.Thottappillil, and V.A.Rakov, J. Geophys. Res. Atmos., 119, No. 6, 2699 (2014).

    Article  ADS  Google Scholar 

  33. A. V. Gurevich, G.M.Milikh, and R.Roussel-Dupre, Phys. Lett. A, 165, 463 (1992).

    Article  ADS  Google Scholar 

  34. A. V. Gurevich and K.P. Zybin, Phys. Usp., 44, No. 11, 1119 (2001).

    Article  ADS  Google Scholar 

  35. A. A. Gurevich, K.P. Zybin, and R. A. Roussel-Dupre, Phys. Lett. A, 254, 79 (1999).

    Article  ADS  Google Scholar 

  36. V.Cooray, G.Cooray, T. Marshall, et al., Atmos. Res., 149, 346 (2014).

    Article  Google Scholar 

  37. S. Arabshahi, J.R.Dwyer, A. Nag, et al., J. Geophys. Res. Space Phys., 119, 479 (2014).

    Article  ADS  Google Scholar 

  38. G.T. Zatsepin and V.A.Kuz’min, JETP Lett ., 4, No. 3, 76 (1966).

    Google Scholar 

  39. A. Nag and V. A. Rakov, J. Geophys. Res., 115, D20102 (2010).

    Article  ADS  Google Scholar 

  40. H.E.Tierney, R. A. Roussel-Dupre, E. M. D. Symbalisty, and W. H. Beasley, J. Geophys. Res., 110, D12109 (2005).

    Article  ADS  Google Scholar 

  41. R. A. Roussel-Dupre and A. V. Gurevich, J. Geophys. Res., 101, No. A2, 2297 (1996).

    Article  ADS  Google Scholar 

  42. J. R.Dwyer and L.P. Babich, J. Geophys. Res., 116, A09301 (2011).

    ADS  Google Scholar 

  43. C. L. Silva and V. P. Pasko, J. Geophys. Res. Atmos., 120, No. 10, 4989 (2015).

    Article  ADS  Google Scholar 

  44. L.Niemeyer, L. Pietronero, and H. J.Wiesmann, Phys. Rev. Lett ., 52, No. 12, 1033 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  45. E. R.Mansell, D. R. MacGorman, C. L. Ziegler, and J.M. Straka, J. Geophys. Res., 107, No. D9 (2002).

  46. D. I. Iudin, V.Yu.Trakhtengertz, and M.Hayakawa, Phys. Rev. E, 68, No. 1, 016601 (2003).

    Article  ADS  Google Scholar 

  47. P. R.Krehbiel, J.A.Riousset, V. P. Pasko, et al., Nature Geosci ., 1, 233 (2008).

    Article  ADS  Google Scholar 

  48. H. J. Wiesmann and H.R. Zeller, J. Appl. Phys., 60, No. 5, 1770 (1986).

    Article  ADS  Google Scholar 

  49. N. Femia, L. Niemeyer, and V.Tucci, J. Phys. D: Appl. Phys., 26, No. 4, 619 (1993).

    Article  ADS  Google Scholar 

  50. M. Hayakawa, D. I. Iudin, and V.Yu.Trakhtengerts, J. Atmos. Sol. Terr. Phys., 70, No. 13, 1660 (2008).

    Article  ADS  Google Scholar 

  51. J. A.Riousset, V.P. Pasko, P.R.Krehbiel, et al., J. Geophys. Res., 112, D15203 (2007).

    Article  ADS  Google Scholar 

  52. D. I. Iudin, F.D. Iudin, and M.Haykawa, Radiophys. Quantum Electron., 58, No 3, 173 (2015).

    Article  ADS  Google Scholar 

  53. E.R.Mansell, D.R. MacGorman, C. L. Ziegler, and J.M. Straka, J. Geophys. Res., 110, D12101 (2015).

    Article  ADS  Google Scholar 

  54. V.Yu.Trakhtengerts, Dokl. Akad. Nauk SSSR, 308, No. 3, 584 (1989).

    Google Scholar 

  55. E. A. Mareev, A. E. Sorokin, and V.Yu.Trakhtengerts, Plasma Phys. Rev., 25, No. 3, 261 (1999).

    ADS  Google Scholar 

  56. Yu.P.Raizer, Gas Discharge Physics, Springer, Berlin (1997).

    Google Scholar 

  57. U.Ebert and D. D. Sentman, J. Phys. D: Appl. Phys., 41, No. 23, 230301 (2008).

    Article  ADS  Google Scholar 

  58. M. G. Andreev, N. A. Bogatov, A. Yu. Kostinskiy, et al., in: Proc. 15th Int. Conf. Atmos. Electr., Norman, Oklahoma, USA, 2014, O-03-98.

  59. A.Yu.Marshall and W. D.Rust, J. Geophys. Res., 96, No. D12, 22297 (1991).

    Article  ADS  Google Scholar 

  60. M. Stolzenburg, T.C. Marshall, and P.R.Krehbiel, J. Geophys. Res., 2010, 115, D19202 (2010).

    Article  ADS  Google Scholar 

  61. J. A. Riousset, V. P. Pasko, P. R. Krehbiel, et al., J. Geophys. Res., 115, A00E10 (2010).

  62. S. S. Davydenko, T. C. Marshall, and M. Stolzenburg, in: Proc. XIV Int. Conf. Atmos. Electr ., Rio de Janeiro, Brazil (2011), p. 230.

  63. I. Gallimberti, G. Bacchiega, A. Bondiou-Glergerie, and P. Lalande, C. R. Phys., 3, No. 10, 1335 (2002).

    Article  ADS  Google Scholar 

  64. S. S. Davydenko, D. I. Iudin, V. Yu.Klimashov, et al., in: Proc. 15th Int. Conf. Atmos. Electr., Norman, Oklahoma, USA, 2014, P-08-19.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Davydenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 7, pp. 530–551, July 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iudin, D.I., Davydenko, S.S. Fractal Model of a Compact Intracloud Discharge. I. Features of the Structure and Evolution. Radiophys Quantum El 58, 477–496 (2015). https://doi.org/10.1007/s11141-015-9621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-015-9621-2

Keywords

Navigation