Skip to main content
Log in

A novel protocol for multiparty quantum key management

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Key management plays a fundamental role in the field of cryptography. In this paper, we propose a novel multiparty quantum key management (QKM) protocol. Departing from single-function quantum cryptography protocols, our protocol has a salient feature in that it accomplishes a complete QKM process. In this process, we can simultaneously realize the functions of key generation, key distribution and key backup by executing the protocol once. Meanwhile, for the first time, we propose the idea of multi-function QKM. Firstly, the secret key is randomly generated by managers via the quantum measurements in \(d\)-level Bell basis. Then, through entanglement swapping, the secret key is successfully distributed to users. Under circumstances of urgent requirement, all managers can cooperate to recover the users’ secret key, but neither of them can recover it unilaterally. Furthermore, this protocol is further generalized into the multi-manager and multi-user QKM scenario. It has clear advantages in the burgeoning area of quantum security group communication. In this system, all group members share the same group key, and group key management is the foundation of secure group communication and hence an important subject of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Menezes, A., Van Oorshot, P.C., Vanstone, S.: Handbook of applied cryptography. CRC Press, Boca Raton (1996)

    Book  MATH  Google Scholar 

  2. Kerckhoffs, A.: La cryptographie militaire. Journal des Sciences Militaires 9, 5–38 (1883)

    Google Scholar 

  3. Fumy, W., Landrock, P.: Principles of key management. IEEE J Sel Areas Commun 11, 785–793 (1993)

    Article  MATH  Google Scholar 

  4. Rafaeli, S., Hutchison, D.: A survey of key management for secure group communication. ACM Comput Surv (CSUR) 35, 309–329 (2003)

    Article  Google Scholar 

  5. Harney, H.: Group key management protocol (GKMP) architecture. Group (1997)

  6. Baugher, M., Canetti, R., Dondeti, L., Lindholm, F.: Multicast security (MSEC) group key management architecture. Internet Engineering Task Force, RFC 4046 (2005)

  7. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. ACM 41–47 (2002)

  8. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Cryptography and coding, pp. 30–45 (1997)

  9. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for authenticated key agreement. Des. Codes Crypt. 28, 119–134 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maher, D.P.: Crypto backup and key escrow. Commun. ACM 39, 48–53 (1996)

    Article  Google Scholar 

  11. Lomonaco, S.J.: A quick glance at quantum cryptography. Cryptologia 23, 1–41 (1999)

    Article  Google Scholar 

  12. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: A Fast Quantum Mechanical Algorithm for Database Search, pp. 212–219 (1996)

  14. Walker, S.T., Lipner, S.B., Ellison, C.M., Balenson, D.M.: Commercial key recovery. Commun. ACM 39, 41–47 (1996)

    Article  Google Scholar 

  15. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Micali, S., Rogaway, P.: Secure computation. In: Lecture Note in Computer (Also Advances in Cryptology -CRYPTO’91) vol. 576, pp. 392–404 (1992)

  17. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 494–503 (2002)

  18. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In IEEE International Conference on Computers, Systems and Signal Processing. New York: Bangalore, India. pp. 175–179 (1984)

  19. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Mousavi Shams, S.H., Gallion, P.: Decoy-state quantum key distribution using homodyne detection. Phys. Rev. A 80, 012327 (2009)

    Article  ADS  Google Scholar 

  22. Helwig, W., Mauerer, W., Silberhorn, C.: Multimode states in decoy-based quantum-key-distribution protocols. Phys. Rev. A 80, 052326 (2009)

    Article  ADS  MATH  Google Scholar 

  23. Pawlowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302 (2011)

    Article  ADS  Google Scholar 

  24. Sun, S.-H., Jiang, M.-S., Liang, L.-M.: Passive faraday-mirror attack in a practical two-way quantum-key-distribution system. Phys. Rev. A 83, 062331 (2011)

    Article  ADS  Google Scholar 

  25. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  26. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  27. Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  28. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. Schauer, S., Huber, M., Hiesmayr, B.C.: Experimentally feasible security check for n-qubit quantum secret sharing. Phys. Rev. A 82, 062311 (2010)

    Article  ADS  Google Scholar 

  30. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)

    Article  ADS  Google Scholar 

  31. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  32. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 012333 (2007)

    Article  ADS  MATH  Google Scholar 

  33. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Article  ADS  Google Scholar 

  34. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793–2804 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, X.-B., Su, Y., Niu, X.-X., Yang, Y.-X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quant. Inf. Process. 13, 101–112 (2014)

    Article  ADS  Google Scholar 

  36. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  37. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Project supported by NSFC (Grant Nos. 61272514, 61170272, 61121061, 61411146001), NCET (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research (Grant No. MMJJ201401012) and the Fok Ying Tong Education Foundation (Grant No. 131067) and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Chen, XB., Dou, Z. et al. A novel protocol for multiparty quantum key management. Quantum Inf Process 14, 2959–2980 (2015). https://doi.org/10.1007/s11128-015-1021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1021-1

Keywords

Navigation