Skip to main content
Log in

Quantum key agreement with EPR pairs and single-particle measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a QKA protocol with the block transmission of EPR pairs. There are several advantages in this protocol. First, this protocol can guarantee both the fairness and security of the shared key. Second, this protocol has a high qubit efficiency since there is no need to consume any quantum state except the ones used for establishing the shared key and detecting eavesdropping. In addition, this protocol uses EPR pairs as the quantum information carriers and further utilizes single-particle measurements as the main operations. Therefore, it is more feasible than the protocols that need to perform Bell measurements. Especially, we also introduce a method for sharing EPR pairs between two participants over collective-dephasing channel and collective-rotation channel, respectively. This method is meaningful since sharing EPR pairs between two participants is an important work in many quantum cryptographic protocols, especially in the protocols over non-ideal channels. By utilizing this method, the QKA protocols, which are based on EPR pairs, can be immune to these kinds of collective noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–234 (1994)

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing, New York, pp. 212–219 (1996)

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–95 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Public-key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  5. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  6. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quant. Electron. 47, 1389–1390 (2011)

    ADS  Google Scholar 

  7. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  8. Tan, Y.G., Cai, Q.Y.: Practical decoy state quantum key distribution with finite resource. Eur. Phys. J. D 56, 449–455 (2010)

    Article  ADS  Google Scholar 

  9. Song, S.Y., Wang, C.: Recent development in quantum communication. Chin. Sci. Bull. 57, 4694–4700 (1999)

    Article  Google Scholar 

  10. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  13. Long, G.L., Deng, F.G., Wang, C., Li, X.H., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  14. Wang, C., Deng, F.G., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  15. Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using type entangled states. Int. J. Theor. Phys. 52, 1354–1361 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  17. Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Deterministic secure quantum communication without maximally entangled states. J. Koeran Phys. Soc. 49, 1354 (2006)

    Google Scholar 

  18. Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.F.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Quantum Inf. Process. 50, 2403–2409 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51, 2787–2797 (2012)

    Article  MATH  Google Scholar 

  20. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G 52, 1913–1918 (2009)

    Article  Google Scholar 

  21. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  22. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639–3642 (2011)

    Article  ADS  Google Scholar 

  23. Tsai, C.W., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460–464 (2012)

    Article  ADS  Google Scholar 

  24. Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)

    Article  ADS  Google Scholar 

  25. Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing theory through noisy channel. Quantum Inf. Comput. 12, 253–270 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  27. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  28. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56, 1670–1678 (2013)

    Article  ADS  Google Scholar 

  29. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  30. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  31. Su, Q., Huang, Z., Wen, Q.Y., Li, W.M.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283, 4408 (2010)

    Article  ADS  Google Scholar 

  32. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Article  Google Scholar 

  33. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “Quantum Key Agreement Protocol with Maximally Entangled States”. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  35. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  36. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement protocol with single particles. Quantum Inf. Process. 12, 1797–1805 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  37. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  38. Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)

    Article  ADS  Google Scholar 

  39. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  40. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  41. Huang, W., Guo, F.Z., Huang, Z., Wen, Q.Y., Zhu, F.C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284, 536–540 (2011)

    Article  ADS  Google Scholar 

  42. Skotiniotis, M., Duer, W., Kraus, B.: Efficient quantum communication under collective noise. Quantum Inf. Comput. 12, 290–323 (2013)

    Google Scholar 

  43. Huang, W., Wen, Q.Y., Jia, H.Y., Qin, S.J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21, 100308 (2012)

    Article  ADS  Google Scholar 

  44. Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inform. 7, 1479 (2009)

    Article  MATH  Google Scholar 

  45. Shih, Y.: Entangled biphoton source-property and preparation. Rep. Prog. Phys. 66, 1009–1044 (2003)

    Article  ADS  Google Scholar 

  46. Sweke, R., Sinayskiy, I., Petruccione, F.: Dissipative preparation of generalized Bell states. J. Phys. B At. Mol. Opt. Phys. 46, 104004 (2013)

    Article  ADS  Google Scholar 

  47. Brida, G., Chekhova, M., Genovese, M., Krivitsky, L.: Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth. Phys. Rev. A 76, 053807 (2007)

    Article  ADS  Google Scholar 

  48. Agnew, M., Salvail, J.Z., Leach, J., Boyd, R.W.: Generation of orbital angular momentum bell states and their verification via accessible nonlinear witnesses. Phys. Rev. Lett. 111, 030402 (2013)

    Article  ADS  Google Scholar 

  49. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. J. Phys. B At. Mol. Opt. Phys. 86, 042337 (2012)

    Article  Google Scholar 

  50. Chen, Z.W., Zhao, B., Chen, Y.A., Schmiedmayer, J., Pan, J.W.: Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007)

    Article  ADS  Google Scholar 

  51. Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61100203, 61003286, 61121061, 61103210), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 2009000 5110010), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2011YB01) and BUPT Excellent Ph.D. Students Foundation (Grant No. CX201217, CX201334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Wen, QY., Liu, B. et al. Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf Process 13, 649–663 (2014). https://doi.org/10.1007/s11128-013-0680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0680-z

Keywords

Navigation