Skip to main content
Log in

Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

When plants suffer from abiotic stresses, cyclic electron flow (CEF) is induced for photo-protection. Putrescine (Put), a primary polyamine in chloroplasts, plays a critical role in stress tolerance. However, the relationship between CEF and Put in chloroplasts for photo-protection is unknown. In this study, we investigated the role of Put-induced CEF for salt tolerance in cucumber plants (Cucumis sativus L). Treatment with 90 mM NaCl and/or Put did not influence the maximum photochemical efficiency of PSII (Fv/Fm), but the photoactivity of PSI was severely inhibited by NaCl. Salt stress induced a high level of CEF; moreover, plants treated with both NaCl and Put exhibited much higher CEF activity and ATP accumulation than those exhibited by single-salt-treated plants to provide an adequate ATP/NADPH ratio for plant growth. Furthermore, Put decreased the trans-membrane proton gradient (ΔpH), which was accompanied by reduced pH-dependent non-photochemical quenching (NPQ) and an increased the effective quantum yield of PSII (Y(II)). The ratio of NADP+/NADPH increased significantly with Put in salt-stressed leaves compared with the ratio in leaves treated with NaCl, indicating that Put relieved over-reduction pressure at the PSI acceptor side caused by salt stress. Collectively, our results suggest that exogenous Put creates an excellent condition for CEF promotion: a large amount of pmf is predominantly stored as Δψ, resulting in moderate lumen pH and low NPQ, while maintaining high rates of ATP synthesis (high pmf).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Put:

Putrescine

CEF:

Cyclic electron flow

NPQ:

Non-photochemical quenching

PGR5:

Protein gradient regulation 5

PGRL1:

PGR-like 1

NDH:

NAD(P)H dehydrogenase

LEF:

Linear electron flow

PAs:

Polyamines

References

  • Aihara Y, Takahashi S, Minagawa J (2016) Heat induction of cyclic electron flow around photosystem I in the symbiotic dinoflagellate Symbiodinium. Plant Physiol 171:522–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev S, Nishiyama Y, Takahashi S, Miyairi S, Suzuki I, Murata N (2005) Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in synechocystis. Plant Physiol 137:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avenson TJ, Cruz JA, Kramer DM (2004) Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci USA 101:5530–5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photo-protection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res 125:151–166

    Article  CAS  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Yan K, Shao H, Zhao S (2013) Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from yellow river delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS ONE 8:e83227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz JA (2004) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56::395–406

    Article  CAS  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132::273–285

    Article  CAS  Google Scholar 

  • Del Duca S, Beninati S (1995) Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem J 305:233–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus: the protective role of polyamines. Biochim Biophys Acta 1767:272–280

    Article  CAS  PubMed  Google Scholar 

  • Galstoon AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  Google Scholar 

  • Hald S, Nandha B, Gallois P, Johnson GN (2008) Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim Biophys Acta 1777:433–440

    Article  CAS  PubMed  Google Scholar 

  • Hamdani S, Yaakoubi H, Carpentier R (2011) Polyamines interaction with thylakoid proteins during stress. J Photochem Photobiol B: Biol 104:314–319

    Article  CAS  Google Scholar 

  • He Y, Fu JL, Yu CL, Wang XM, Jiang QS, Hong J, Lu KX, Xue GP, Yan CQ, James A, Xu LG, Chen JP, Jiang DA (2015) Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J Exp Bot 66::6877–6889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Hague A (1988) Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochim Biophys Acta 932:107–115

    Article  CAS  Google Scholar 

  • Huang W, Zhang S-B, Cao K-F (2010) Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. Plant Cell Physiol 51::1922–1928

    Article  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Kotzabasis K (2007) Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochim Biophys Acta 1767:1372–1382

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Kotzabasis K (2014) Polyamines in chemiosmosis in vivo: a cunning mechanism for the regulation of ATP synthesis during growth and stress. Front Plant Sci 5:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Ioannidis NE, Sfichi L, Kotzabasis K (2006) Putrescine stimulates chemiosmotic ATP synthesis. Biochim Biophys Acta 1757:821–828

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Cruz JA, Kotzabasis K, Kramer DM (2012) Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS ONE 7:e29864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jajoo A (2013) Changes in photosystem II in response to salt stress. In: P. Ahmad et al. (ed.) Ecophysiology and responses of plants under salt stress, Springer, New York, pp 149–168

    Chapter  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Peterson RB (2005) Control of cytochrome b(6)f at low and high light intensity and cyclic electron transport in leaves. Biochim Biophys Acta 1708:79–90

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Talts E, Oja V, Eichelmann H, Peterson RB (2009) Fast cyclic electron transport around photosystem I in leaves under far-red light: a proton-uncoupled pathway? Photosynth Res 103:79–95

    Article  CAS  PubMed  Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang P, Liu B, Feng DR, Zhang J, Su JB, Zhang Y, Wang JF, Wang HB (2013) A deficiency in chloroplastic ferredoxin 2 facilitates effective photosynthetic capacity during long-term high light acclimation in Arabidopsis thaliana. Plant J 76:861–874

    Article  CAS  PubMed  Google Scholar 

  • Lu CM, Qiu NW, Wang BS, Zhang JH (2003) Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J Exp Bot 54:851–860

    Article  CAS  PubMed  Google Scholar 

  • Lütz C, Navakoudis E, Seidlitz H, Kotzabasis K (2005) Simulated solar irradiation with enhanced UV-B adjust plastid- and thylakoid-associated polyamine changes for UV-B protection. Biochim Biophys Acta 1710:24–33

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Allakhverdiev SI, Jajoo A (2010) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255

    Article  CAS  PubMed  Google Scholar 

  • Mills JD, Telfer A, Barber J (1976) Cation control of chlorophyll-alpha fluorescence yield in chloroplasts-location of cation sensitive sites. Biochim Biophys Acta 440:495–505

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and Is essential for photo-protection in Arabidopsis. Cell 110::361–371

    Article  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59::651–681

    Article  CAS  Google Scholar 

  • Niyogi KK (1999) PHOTOPROTECTION RECISITED: genetic and molecular approaches. Annu Rev Plant Biol 50::333–359

    Article  Google Scholar 

  • Pascal AA, Liu ZF, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang WR, Ruban A (2005) Molecular basis of photo-protection and control of photosynthetic light-harvesting. Nature 436:134–137

    Article  CAS  PubMed  Google Scholar 

  • Pick U, Weiss M (1988) The mechanism of stimulation of photophosphorylation by amines and by nigericin. Biochim Biophys Acta 934:22–31

    Article  CAS  Google Scholar 

  • Schreiber U, Klughammer C (2008) New accessory for the Dual-PAM-100: the P515/535 module and examples of its application. PAM 1:1–10

    Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58::199–217

    Article  CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigalat C, de Kouchkovsky Y, Haraux F, de Kouchkovsky F (1988) Shift from localized to delocalized protonic energy coupling in thylakoids by permeant amines. Biochim Biophys Acta 934:375–388

    Article  CAS  Google Scholar 

  • Sun YJ, Geng QW, Du YP, Yang XH, Zhai H (2017) Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Sci 256:65–71

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Rossi F, Tadini L, Labs M, Colombo M, Jahns P, Kater MM, Leister D, Finazzi G, Aro E-M, Barbato R, Pesaresi P (2015) PGR5-PGRL1-dependent cyclic electron transport modulates linear electron transport rate in Arabidopsis thaliana. Mol Plant 9:271–288

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi A, Ishikawa N, Obayashi T, Ishida S, Obokata J, Endo T, Sato F (2009) Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches. Plant J 57:207–219

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J, Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan K, Wu CW, Zhang LH, Chen XB (2015) Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front Plant Sci 6:227

    PubMed  PubMed Central  Google Scholar 

  • Yuan YH, Shu S, Li SH, He LZ, Li H, Du NS, Sun J, Guo SR (2014) Effects of exogenous putrescine on chlorophyll fluorescence imaging and heat dissipation capacity in cucumber(Cucumis sativus L.) under salt stress. J Plant Growth Regul 33::798–808

    Article  CAS  Google Scholar 

  • Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW (2011) Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta 234:883–889

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to my supervisor, Guo Shirong, for his valuable support for my work. I am grateful to the numerous individuals who participated in this research. Mr. Sheng Shu and Mr. Yu Wang provided critical discussion and comments, I also thank Ruonan Yuan for help with the experiment technology.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 31672199 and 31471869) and was supported by China Agriculture Research System (CARS-23-B12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1878 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Shu, S., Wang, Y. et al. Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber. Photosynth Res 141, 303–314 (2019). https://doi.org/10.1007/s11120-019-00631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00631-y

Keywords

Navigation