Skip to main content
Log in

Vibronic models for nonlinear spectroscopy simulations

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

It is already well established that the high-frequency intramolecular vibrations are responsible for many observed dynamic phenomena in linear and nonlinear electronic spectroscopy such as the spectral lineshape formation, the transition dipole moment, the lifetime borrowing, and vibrational and mixed coherence beats. All these implications together with the vibronic enhancement of the energy and charge transfer can be explained by the vibronic molecular exciton theory and are highly relevant for the description of the spectral dynamics in photosynthetic pigment–protein complexes. In this paper, a few critical points of the vibronic theory application to linear and nonlinear signals are discussed. Models, which differ in the selection and truncation of molecular basis, are compared by analyzing the energy spectrum and exciton–vibrational dynamics in the presence of the energetic disorder. The limits of the widely used one-particle approximation are defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91:2778–2797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butkus V, Valkunas L, Abramavicius D (2012a) Molecular vibrations-induced quantum beats in two-dimensional electronic spectroscopy. J Chem Phys 137:044513

    Article  PubMed  Google Scholar 

  • Butkus V, Zigmantas D, Valkunas L, Abramavicius D (2012b) Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem Phys Lett 545:40–43

    Article  CAS  Google Scholar 

  • Butkus V, Zigmantas D, Abramavicius D, Valkunas L (2013) Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem Phys Lett 587:93–98

    Article  CAS  Google Scholar 

  • Butkus V, Valkunas L, Abramavicius D (2014) Vibronic phenomena and exciton-vibrational interference in two-dimensional spectra of molecular aggregates. J Chem Phys 140:034306

    Article  Google Scholar 

  • Chenu A, Christensson N, Kauffmann HF, Mančal T (2013) Enhancement of vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes. Sci Rep 3:2029

    Article  PubMed Central  PubMed  Google Scholar 

  • Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat Phys 9:113–118

    Article  CAS  Google Scholar 

  • Cho M, Vaswani HM, Brixner T, Stenger J, Fleming GR (2005) Exciton analysis in 2D electronic spectroscopy. J Phys Chem B 109:10542–10556

    Article  CAS  PubMed  Google Scholar 

  • Davydov A (1962) A theory of molecular excitions. McGraw-Hill, New York

    Google Scholar 

  • Fuller FD, Jie Pan, Senlik SS, Wilcox DS, Ogilvie JP (2013) Observation of coherence in the photosystem II reaction center. arXiv, preprint 1310.1111v1

  • Fulton RL, Gouterman M (1964) Vibronic coupling. II. Spectra of dimers. J Chem Phys 41:2280–2286

    Article  CAS  Google Scholar 

  • Kell A, Feng X, Reppert M, Jankowiak RJ (2013) On the shape of the phonon spectral density in photosynthetic complexes. J Phys Chem B 117:7317–7323

    Article  CAS  PubMed  Google Scholar 

  • Knapp EW (1984) Lineshapes of molecular aggregates. Exchange narrowing and intersite correlation. Chem Phys 85:73–82

    Article  CAS  Google Scholar 

  • Kobayashi T (1996) J—aggregates. World Scientific, Singapore

    Google Scholar 

  • Malyshev VA, Domínguez-Adame F (1999) Motional narrowing effect in one-dimensional Frenkel chains with configurational disorder. Chem Phys Lett 313:255–260

    Article  CAS  Google Scholar 

  • May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Milota F, Sperling J, Nemeth A, Abramavicius D, Mukamel S, Kauffmann HF (2009) Excitonic couplings and interband energy transfer in a double-wall molecular aggregate imaged by coherent two-dimensional electronic spectroscopy. J Chem Phys 131:054510

    Article  CAS  PubMed  Google Scholar 

  • Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New York

    Google Scholar 

  • Nemeth A, Milota F, Mančal T, Lukeš V, Kauffmann HF, Sperling J (2008) Vibronic modulation of lineshapes in two-dimensional electronic spectra. Chem Phys Lett 459:94–99

    Article  CAS  Google Scholar 

  • Nemeth A, Milota F, Mančal T, Lukeš V, Hauer J, Kauffmann HF, Sperling J (2010) Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Exp J Chem Phys 132:184514

    Article  Google Scholar 

  • Novoderezhkin VI, Rutkauskas D, van Grondelle R (2006) Dynamics of the emission spectrum of a single LH2 complex: interplay of slow and fast nuclear motions. Biophys J 90:2890–2902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Philpott MR (1971) Theory of the coupling of electronic and vibrational excitations in molecular crystals and helical polymers. J Chem Phys 55:2039

    Article  Google Scholar 

  • Polyutov S, Kühn O, Pullerits T (2012) Exciton-vibrational coupling in molecular aggregates: electronic versus vibronic dimer. Chem Phys 394:21–28

    Article  CAS  Google Scholar 

  • Renger T, May V (1997) Multiple exciton effects in molecular aggregates: application to a photosynthetic antenna complex. Phys Rev Lett 78:3406–3409

    Article  CAS  Google Scholar 

  • Scholes GD, Fleming GR (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774

    Article  CAS  PubMed  Google Scholar 

  • Schulze A, Torbjörnsson M, Kühn O, Pullerits T (2014) Exciton coupling induces vibronic hyperchromism in light-harvesting complexes. arXiv, preprint 1312.5352v2,

  • Spano FC (2010) The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc Chem Res 43:429–439

    Article  CAS  PubMed  Google Scholar 

  • Spano FC, Silvestri L (2010) Multiple mode exciton-vibrational coupling in H-aggregates: synergistic enhancement of the quantum yield. J Chem Phys 132:094704

    Article  CAS  PubMed  Google Scholar 

  • Tiwari V, Peters WK, Jonas DM (2013) Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc Natl Acad Sci USA 110:1203–1208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner DB, Dinshaw R, Lee K-K, Belsley M, Wilk KE, Curmi PMG, Scholes GD (2012) Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys Chem Chem Phys 14:4857–4874

    Article  CAS  PubMed  Google Scholar 

  • Valkunas L, Abramavicius D, Mančal T (2013) Molecular excitation dynamics and relaxation. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic excitons. World Scientific Co., Singapore

    Book  Google Scholar 

  • Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, van Grondelle R, van Amerongen H (2000) Electron-vibrational coupling in the Fenna–Matthews–Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B 104:5825–5831

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the European Social Fund under the Global Grant measure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonas Valkunas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bašinskaitė, E., Butkus, V., Abramavicius, D. et al. Vibronic models for nonlinear spectroscopy simulations. Photosynth Res 121, 95–106 (2014). https://doi.org/10.1007/s11120-014-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0002-z

Keywords

Navigation