Skip to main content
Log in

Phosphorescence study of chlorophyll d photophysics. Determination of the energy and lifetime of the photo-excited triplet state. Evidence of singlet oxygen photosensitization

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chlorophyll d (Chl d) is the major pigment in both photosystems (PSI and II) of the cyanobacterium Acaryochloris marina, whose pigment composition represents an interesting alternative in oxygenic photosynthesis. While abundant information is available relative to photophysical properties of Chl a , the understanding of Chl d photophysics is still incomplete. In this paper, we present for the first time a characterization of Chl d phosphorescence, which accompanies radiative deactivation of the photoexcited triplet state of this pigment. Reliable information was obtained on the energy and lifetime of the Chl d triplet state in frozen solutions at 77 K using diethyl ether and aqueous dispersions of Triton X100 as solvents. It is shown that triplet Chl d is effectively populated upon photoexcitation of pigment molecules and efficiently sensitizes singlet oxygen phosphorescence in aerobic solutions under ambient conditions. The data obtained are compared with the previous results of the phosphorescence studies of Chl a and Pheo a, and their possible biological implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Zeng H, Larkum AW, Cai ZL (2004) Raman properties of chlorophyll d, the major pigment of Acaryochloris marina: studies using both Raman spectroscopy and density functional theory. Spectrochim Acta A 60:527–534

    Article  Google Scholar 

  • Di Valentin M, Ceola S, Agostini G, Telfer A, Barber J, Böhles F, Santabarbara S, Carbonera D (2007) The photo-excited triplet state of Chlorophyll d in methyl-tetrahydrofuran studied by optically detected magnetic resonance and time-resolved EPR. Mol Phys 105:2109–2117

    Article  CAS  Google Scholar 

  • Dvornikov SS, Knyukshto VN, Solovyov KN, Tsvirko MP (1979) Phosphorescence of chlorophylls and their pheophytins. Opt Spektr (URSS) 46:689–695

    CAS  Google Scholar 

  • Hoff AJ (1986) Triplets: phosphorescence and magnetic resonance. In: Govindjee AmetzJ, Fork DC (eds) Light emission of plant and bacteria. Academic Press Inc, New York, pp 225–266

    Google Scholar 

  • Holt AS, Morley HV (1959) A proposed structure for chlorophyll d. Can J Chem 37:507–514

    Article  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Kleibeuker JF, Platenkamp RJ, Schaafsma TJ (1978) The triplet state of photosynthetic pigments. Chem Phys 27:51–64

    Article  CAS  Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596–602

    Article  PubMed  CAS  Google Scholar 

  • Krasnovsky AA Jr (1979) Photoluminescence of singlet oxygen in pigment solutions. Photochem Photobiol 29:29–36

    Article  CAS  Google Scholar 

  • Krasnovsky AA Jr (1982) Delayed fluorescence and phosphorescence of plant pigments. Photochem Photobiol 36:733–741

    Article  Google Scholar 

  • Krasnovsky AA Jr (1994) Singlet oxygen and primary mechanisms of photooxidative damage of chloroplasts. Studies based on detection of oxygen and pigment phosphorescence. Proc Roy Soc Edinburgh 102B:219–235

    Google Scholar 

  • Krasnovsky AA Jr (1998) Phosphorescence studies of singlet oxygen in photobiochemical systems. Membr Cell Biol 12:665–690

    PubMed  Google Scholar 

  • Krasnovsky AA Jr (2004) Singlet oxygen and photodynamic action. Biofizika 49:289–306

    Google Scholar 

  • Krasnovsky AA Jr, Semenova AN (1981) Parameters of the triplet state and spectral properties of the monomeric chlorophyll in liposomes at −196°C. Photobiochem Photobiophys 3:11–18

    Google Scholar 

  • Krasnovsky AA Jr, Romaniuk VA, Litvin FF (1973) On the phosphorescence and delayed fluorescence of chlorophylls and pheophytins a and b. Dokl AN SSSR (Biophysics) 209:965–968

    Google Scholar 

  • Krasnovsky AA Jr, Lebedev NN, Litvin FF (1974) Spectral characteristics of phosphorescence of chlorophylls and pheophytins, Dokl. AN SSSR (Biophysics) 216:1406–1409

    Google Scholar 

  • Krasnovsky AA Jr, Lebedev NN, Litvin FF (1975) Detection of the triplet state of chlorophyll and chlorophyll precursors from measurement of their delayed fluorescence and phosphorescence in leaves and chloroplasts. Dokl AN SSSR (Biophysics) 225:207–210

    Google Scholar 

  • Krasnovsky AA Jr, Lebedev NN, Litvin FF (1977) Phosphorescence and delayed fluorescence of chlorophyll and its precursors in solutions, leaves and chloroplasts at 77 K. Studia Biophys B65:81–89

    Google Scholar 

  • Krasnovsky AA Jr, Neverov KV, Egorov SY, Roeder B, Levald T (1990) Photophysical studies of pheophorbide a and pheophytin a: phosphorescence and photosensitized singlet oxygen luminescence. J Photochem Photobiol B Biol 5:245–254

    Article  Google Scholar 

  • Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AW (2005) Ecology: a niche for cyanobacteria containing chlorophyll d. Nature 433:820

    Article  PubMed  Google Scholar 

  • Losev AP, Nichiporovich IN, Sagun EI, Vasilenok GD (1987) Detection of nonliganded forms in solutions of chlorophyll and protochlorophyll. Dokl AN BSSR 31:131–134

    CAS  Google Scholar 

  • Manning WM, Strain HH (1943) Clorophyll d, a green pigment of red algae. J Biol Chem 151:1–19

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Neverov KV, Krasnovsky AA Jr (2004) Phosphorescence analysis of the chlorophyll triplet states in preparations of PS 2. Biofizika 49:493–498

    PubMed  CAS  Google Scholar 

  • Neverov KV, Shalygo NY, Averina NG, Krasnovsky AA Jr (1996) Formation of the pigment triplet states in green plant leaves treated with chelators of iron. Russ J Plant Physiol 43:89–99

    Google Scholar 

  • Niedzwiedzki DM, Blankenship RE (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106:227–238

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenburg P, Clarke RJ, Cai ZL, Chen M, Larkum AW, Cabral NM, Ghiggino KP, Reimers JR (2003) Examination of the photophysical processes of chlorophyll d leading to a clarification of proposed uphill energy transfer processes in cells of Acaryochloris marina. Photochem Photobiol 77:628–637

    Article  PubMed  CAS  Google Scholar 

  • Okazaki S, Tomo T, Mimuro M (2010) Direct measurement of singlet oxygen produced by four-ringed chlorophyll species in acetone solution. Chem Phys Lett 485:202–206

    Article  CAS  Google Scholar 

  • Santabarbara S, Chen M, Larkum AW, Evans MCW (2007) An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophyll d containing photosystem I of Acaryochloris marina. FEBS Lett 581:1567–1571

    Article  PubMed  CAS  Google Scholar 

  • Schenderlein M, Çetin M, Barber J, Telfer A, Schlodder E (2008) Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. Biochim Biophys Acta 1777:1400–1408

    Article  PubMed  CAS  Google Scholar 

  • Schlodder E, Çetin M, Eckertet H-J, Scmittt F-J, Barber J, Telfer A (2007) Both chlorophyll a and d are essential for the photochemistry in photosystem II of the cyanobacteria Acaryochloris marina. Biochim Biophys Acta Bioenerg 1767:589–595

    Article  CAS  Google Scholar 

  • Takiff L, Boxer SG (1988) Phosphorescence spectra of bacteriochlorophylls. J Am Chem Soc 110:4425–4426

    Article  CAS  Google Scholar 

  • Telfer A, Pascal AA, Bordes L, Barber J, Robert B (2010) Fluorescence line narrowing studies on isolated chlorophyll molecules. J Phys Chem B 114:2255–2260

    Article  PubMed  CAS  Google Scholar 

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support of the Program “Molecular and cellular biology” of the Russian Academy of Science and the Russian Foundation for Basic Research (grant #10-03-00750a) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Krasnovsky Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neverov, K.V., Santabarbara, S. & Krasnovsky, A.A. Phosphorescence study of chlorophyll d photophysics. Determination of the energy and lifetime of the photo-excited triplet state. Evidence of singlet oxygen photosensitization. Photosynth Res 108, 101–106 (2011). https://doi.org/10.1007/s11120-011-9657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9657-x

Keywords

Navigation