Skip to main content
Log in

Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A set of equations for determining chlorophyll a (Chl a) and accessory chlorophylls b, c 2 , c 1  + c 2 and the special case of Acaryochloris marina, which uses Chl d as its primary photosynthetic pigment and also has Chl a, have been developed for 90% acetone, methanol and ethanol solvents. These equations for different solvents give chlorophyll assays that are consistent with each other. No algorithms for Chl c compounds (c 2 , c 1  + c 2) in the presence of Chl a have previously been published for methanol or ethanol. The limits of detection (and inherent error, ± 95% confidence limit), for chlorophylls in all organisms tested, was generally less than 0.1 µg/ml. The Chl a and b algorithms for green algae and land plants have very small inherent errors (< 0.01 µg/ml). Chl a and d algorithms for Acaryochloris marina are consistent with each other, giving estimates of Chl d/a ratios which are consistent with previously published estimates using HPLC and a rarely used algorithm originally published for diethyl ether in 1955. The statistical error structure of chlorophyll algorithms is discussed. The relative error of measurements of chlorophylls increases hyperbolically in diluted chlorophyll extracts because the inherent errors of the chlorophyll algorithms are constants independent of the magnitude of absorbance readings. For safety reasons, efficient extraction of chlorophylls and the convenience of being able to use polystyrene cuvettes, the algorithms for ethanol are recommended for routine assays of chlorophylls. The methanol algorithms would be convenient for assays associated with HPLC work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Miyachi S, Yobayashi M (2001) Detection of chlorophyll d′ and pheophytin a in a chlorophyll d – dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Anal Sci 17:205–208

    Article  PubMed  CAS  Google Scholar 

  • Allen MM (1973) Methods for cyanophyceae. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 127–138

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Atwell BJ, Kreidermann PE, Turnbull CGN (1999) Plants in action. MacMillan Education Australia, South Yarra, Australia

    Google Scholar 

  • BRENDA (2005) Brenda: the comprehensive enzyme information system. Retrieved from [http://www.brenda.uni-koeln.de/index.php4 on 13 July 2005

  • French CS (1960) The chlorophyll in vivo and in vitro. In: Ruhland W (ed) Encyclopedia of plant physiology, vol 5/1. Springer-Verlag Publ., Berlin, pp 252–297

    Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Nat Acad Sci USA 95:13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Humphrey GF, Jeffrey SW (1997) Test of accuracy of spectrophotometric equations for the simultaneous determination of chlorophylls a, b, c 1 and c 2. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, pp 616–621

    Google Scholar 

  • Hynninen PH (1991) 1.7 Chemistry of chlorophylls: modifications. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton-Ann Arbor-Boston-Landon pp 145–209

    Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyll a, b, c 1 and c 2 in higher plants and natural phytoplankton. Bioch Physiol Pflanz (BPP) 165:191–194

    Google Scholar 

  • Jeffrey SW, Mantoura RFC, Bjornland T (1997) Data for the identification of 47 key phytoplankton pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds)Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, pp 449–559

    Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (eds) (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Monographs on Oceanographic Methodology, vol 10. UNESCO Publishing, Paris

  • Jeffrey SW, Welschmeyer NA (1997) Spectrophotometric and fluorometric equations in common use in oceanography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, pp 597–621

    Google Scholar 

  • Jeffrey SW, Wright SW (1997) Qualitative and quantitative HPLC analysis of SCOR reference culture collections. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, pp 343–360

    Google Scholar 

  • Johnson ML, Faunt LM (1992) Parameter estimation by least squares methods. Methods Enzymol 210:1–37

    PubMed  CAS  Google Scholar 

  • Kuhl M, Min Chen, Ralph PJ, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d.␣Nature 433:820

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD, Scaramuzzi C, Cox GC, Hiller RG, Turner AG (1994) Light harvesting chlorophyll c-like pigment in Prochloron. Proc Nat Acad Sci USA 91:679–683

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Method Enzymol 148:350–382

    CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Manning WM, Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1–19

    CAS  Google Scholar 

  • Mantoura RFC, Jeffrey SW, Llewellyn CA, Claustre H, Morales CE (1997) Comparison between spectrophotometric, fluorometric HPLC methods for chlorophyll analysis. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, pp 361–380

    Google Scholar 

  • Matile P, Hortensteiner S, Thomas H (1999) Chlorophyll degradation. Ann Rev Plant Physiol Plant Mol Biol 50:67–95

    Article  CAS  Google Scholar 

  • McLachlan J (1973) Growth media – marine. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 25–51

    Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Nat Acad Sci USA 102:850–855

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M, Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina gen. et. sp. nov. (Cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253

    Article  CAS  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303: 1633

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenburg P, Clarke RJ, Cai Z-L, Min Chen, Larkum AWD, Cabral NM, Ghiggino KP, Reimers JR (2003) Examination of the photophysical processes of Chlorophyll d leading to a clarification of proposed uphill energy transfer processes in cells of Acaryochloris marina. Photochem Photobiol 77:638–637

    Article  Google Scholar 

  • Papista E, Acs E, Boddi B (2002) Chlorophyll-a determination with ethanol – a critical test. Hydrobiologia 485:191–198

    Article  CAS  Google Scholar 

  • Porra RJ (1990) A simple method for extracting chlorophylls from the recalcitrant alga, Nannochloris atomus, without formation of spectroscopically-different magnesium- rhodochlorin derivatives. Biochim Biophys Acta 1019: 137–141

    Article  CAS  Google Scholar 

  • Porra RJ (1991) 1.2 recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic and marine organisms, including recalcitrant algae. In: Scheer H, (ed) Chlorophylls. CRC Press Boca Raton, Ann Arbor, Boston, Landon, pp 31–57

    Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kreidemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Sartory DP, Grobbelaar JU (1984) Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177–187

    CAS  Google Scholar 

  • Scheer H (ed) (1991) Chlorophylls. CRC Press, Boca Raton, Ann Arbor, Boston, Landon

    Google Scholar 

  • Smith JHC, Benitez A (1955) Chlorophylls: analysis of plant materials. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol 4. Springer Publ., Berlin, pp␣142–196

    Google Scholar 

  • Straume H, Johnson ML (1992) Analysis of residuals: criteria for determining goodness-of-fit. Method Enzymol 210:87–105

    Article  CAS  Google Scholar 

  • Wright SW, Jeffrey SW (1997) High resolution HPLC system for chlorophylls and carotenoids of marine plankton. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, pp 327–341

    Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura FRC (1997) Evaluation of methods and solvents for pigment analysis. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris, pp 261–282

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dr Min Chen for her kind gift of preparations of pure Chlorophyll d and for providing advice on growing Acaryochloris marina in culture. The author wishes to thank Dr George F Humphrey for his critical reading of the manuscript. Access to facilities in the laboratory of Prof AWD Larkum and Dr RG Quinnell is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Ritchie.

Appendices

Appendices

Appendix 1: Asymptotic errors

For a multiple linear equation of the form, \( Z = Av + Bw + Cx + Dy{\hbox{,}} \) where, the absorbance coefficient constants A,B,C and D all have measurable errors ±A, ±B, ±C and ±D, the asymptotic error (±Z) is,

$$ \eqalign{ \pm Z^{{\hbox{2}}} \approx {\left( {\frac{{{\hbox{d}}Z}} {{{\hbox{d}}v}}} \right)}^{{\hbox{2}}} \pm A^{{\hbox{2}}} + {\left( {\frac{{{\hbox{d}}Z}} {{{\hbox{d}}w}}} \right)}^{{\hbox{2}}} \pm B^{{\hbox{2}}} + {\left( {\frac{{{\hbox{d}}Z}} {{{\hbox{d}}x}}} \right)}^{{\hbox{2}}} \cr \qquad\qquad\pm C^{{\hbox{2}}} + {\left( {\frac{{{\hbox{d}}Z}} {{{\hbox{d}}y}}} \right)}^{{\hbox{2}}} \pm D^{{\hbox{2}}}} $$

since \( \frac{{{\hbox{d}}Z}} {{{\hbox{d}}v}}{\hbox{, }}\frac{{{\hbox{d}}Z}} {{{\hbox{d}}w}}{\hbox{, }}\frac{{{\hbox{d}}Z}} {{{\hbox{d}}x}}{\hbox{ \ }}\frac{{{\hbox{d}}Z}} {{{\hbox{d}}y}}{\hbox{ = 1,}} \) \( <$> <$>\pm Z \approx {\sqrt { \pm A^{{\hbox{2}}} + \pm B^{{\hbox{2}}} + \pm C^{{\hbox{2}}} + \pm D^{{\hbox{2}}} } } \) (Note that the error is independent of absorbance readings v,w,x or y).

For example, for a spectrophotometric equation for Chl a using absorbancesat two wavelengths, A 630 and A 664 and calculated absorbance coefficients E 630 and E 664,

$$ \eqalign{ {\!\hbox{Chl }}a{\hbox{ (}}\mu {\hbox{g/ml)}} = A_{{{\hbox{630}}}} {\hbox{.}}E_{{{\hbox{630}}}} {\hbox{ + }}A_{{{\hbox{664}}}} {\hbox{.}}E_{{{\hbox{664}}}} {\hbox{,}} \cr \pm {\hbox{Chl }}a{\hbox{ (}}\mu {\hbox{g}}{\hbox{.ml)}} \approx {\sqrt { \pm E_{{{\hbox{630}}}} ^{{\hbox{2}}} {\hbox{ + }} \pm E_{{{\hbox{664}}}} ^{{\hbox{2}}} } }. \cr }<!endaligned> $$

The asymptotic error of a chlorophyll ratio can be calculated in a similar fashion.

For, \( Z = \frac{B} {A}{\hbox{,}} \) where B and A have errors ± B and ± A, the error is approximately, \( \pm Z \approx {\hbox{ }}{\sqrt {{\left( {\frac{{{\hbox{d}}Z}} {{{\hbox{d}}A}}} \right)}^{2} {\left( { \pm A} \right)}^{2} + {\left( {\frac{{{\hbox{d}}Z}} {{{\hbox{d}}B}}} \right)}^{2} {\left( { \pm B} \right)}^{2} } }{\hbox{,}} \) which simplifies to \( \pm Z \approx Z{{\sqrt {{\left( {\frac{{ \pm{ A}}} {A}} \right)}^{{\hbox{2}}} + {\left( {\frac{{ \pm B}} {B}} \right)}^{{\hbox{2}}} } }}. \)

A Chl b/a ratio can therefore be expressed as,

$$ \frac{{{\hbox{Chl }}b}} {{{\hbox{Chl }}a}} \pm {\left( {{\left( {\frac{{{\hbox{Chl }}b}} {{{\hbox{Chl }}a}}} \right)}{\sqrt {{\left( {\frac{{ \pm {\hbox{Chl }}a}} {{{\hbox{Chl }}a}}} \right)}^{{\hbox{2}}} + {\left( {\frac{{ \pm {\hbox{Chl }}b}} {{{\hbox{Chl }}b}}} \right)}^{{\hbox{2}}} } }} \right)}{\hbox{ }}. $$

Appendix 2: Matrix algebra

The example shown are for sets of spectrophotometric readings in acetone solvent where absorbances are measured at 630, 647, 664 and 691 nm which are the Qy values are for Chl c 2 and Chl c 1  + c 2, b, a and d respectively. It can be shown that all the chlorophyll equations have the same solution matrix. For a chlorophyll equation based on absorbance readings at two wavelengths, Chl = E 647.A 647 + E 663.A 664, for a chlorophyll equation requiring measurements at three wavelengths, Chl = E 630.A 630 + E 647.A 647 + E 664.A 664,

Appendix 3: Published chlorophyll formulae used in the present study

The equations of Smith and Benitez (1955) have been recalculated using the following extinction values: εChl a,663 = 101 l g−1 A cm−1, εChl a,688 = 1.848 l g−1 A cm−1, εChl d,663 = 12.83 l g−1 A cm−1, εChl d,663 = 110.23 l g−1 A cm−1). *Inherent errors calculated on the assumption that the relative errors of the absorbance coefficients were ± 1.0%. **Inherent errors quoted here are ± 2 × standard deviations of the extinction values found by Porra et al. (1989). The acetone equations for Chl a and b by Porra et al. (1989) are for 80% acetone and so have not been included in the present study.

Authority

Solvent

Chlorophyll

Formulae (µg ml−1)

Inherent error* (µg ml−1)

Humphrey and Jeffrey (1975)*

90% acetone

a

11.93 × A 664 − 1.93 × A 647

0.1209

b

−5.5 × A 664 + 20.36 × A 647

0.2108

a

11.43 × A 664 − 0.40 × A 630

0.1144

c 2

−3.80 × A664 + 24.88 × A 630

0.2516

a

11.47 × A 664 − 0.40 × A 630

0.1148

c 1 + c 2

−3.73 × A 664 + 24.36 × A 630

0.2464

Porra et’al. (1989), Porra (1991, 2002)**

100% methanol

a

16.29 × A665–8.54 × A652

0.6056

b

−13.58 × A 665 + 30.66 × A 652

1.1438

Rowan (1989)*

100% ethanol

a

13.70 × A665 − 5.76 × A649

0.1486

b

−7.60 × A 665 + 25.8 × A 649

0.2690

Modified from Smith and Benitez (1955)*

100% diethyl ether

a

9.92 × A 663 − 1.15 × A 688

0.0999

d

−0.166 × A 663 + 9.09 × A 688

0.0909

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.J. Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents. Photosynth Res 89, 27–41 (2006). https://doi.org/10.1007/s11120-006-9065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9065-9

Keywords

Navigation