Skip to main content
Log in

Sequence Analysis of New S-RNase and SFB alleles in Japanese Apricot (Prunus mume)

  • Brief Communication
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

As with other self-incompatible Prunus species, cultivars of Japanese apricot (Prunus mume Sieb. et Zucc.) display the S-RNase-based gametophytic self-incompatibility system. In this study, S-genotypes of ten Japanese apricot cultivars native to China were subjected to polyacrylamide gel electrophoresis (PAGE) analysis using an efficient Prunus S-RNase primer pair, Pru-C2 and PCE-R. In addition, three new S-RNase genes (S 34 , S 35 and S 36 -RNase) and six new SFB genes (PmSFB14, PmSFB18, PmSFB22, PmSFB24, PmSFB31 and PmSFB34) were identified and their sequences were characterized and deposited in the GenBank database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderson MA, Cornish EC, Mau SL, Williams EG, Hoggart R, Atkinson A, Bonig I, Grego B, Simpson R, Roche PJ, Haley JD, Penschow JD, Niall HD, Tregear GW, Coghlan JP, Crawford RJ, Clarke AE (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321:38–44

    Article  CAS  Google Scholar 

  • Beppu K, Yamane H, Yaegaki H, Yamaguchi M, Kataota I, Tao R (2002) Diversity of S-RNase genes and haplotypes in Japanese plum (Prunus salicina Lindl.). J Hortic Sci Biotechnol 77:658–664

    CAS  Google Scholar 

  • Cai BH, Zhang JY, Gao ZH, Qu SC, Tong ZG, Mi L, Qiao YS, Zhang Z (2008) An improved method for isolation of total RNA from the leaves of Fragaria spp. J Agric Sci 6:875–877

    Google Scholar 

  • Chen XL, Shu HR, Chen XS (2004) Studies on self-incompatibility in stone fruit trees. Chin Bull Bot 21(6):755–764

    Google Scholar 

  • Chu MY (1999) China fruit records-Mei. China Forestry, Beijing

    Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Book  Google Scholar 

  • East EM, Mangelsdorf AJ (1925) A new interpretation of the hereditary behaviour of self-sterile plants. Proc Natl Acad Sci USA 11:166–171

    Article  PubMed  CAS  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8:203–213

    Article  PubMed  CAS  Google Scholar 

  • Feng JR, Chen XS, Wu Y (2006) Molecular detection and sequences characterization of self-incompatibility S-RNase gene in apricot (Armeniaca vulgaris). Sci Silvae Sin 42:129–132

    CAS  Google Scholar 

  • Goldway M, Shal O, Yehuda H, Matiryahu A, Stern RA (1999) ‘Jonathan’ apple is a lower-potency pollenizer of ‘Top Red’ than ‘Golden Delicious’ due to partial S-allele incompatibility. J Hortic Sci Biotechnol 73:931–941

    Google Scholar 

  • Gu C, Zhang SJ, Huang SX, Heng W, Liu QZ, Wu HQ, Wu J (2010) Identification of S-genotypes in Chinese cherry cultivars (Prunus pseudocerasus Lindl.). Tree Genet Genome 6:579–590

    Article  Google Scholar 

  • Gu C, Wu J, Zhang SJ, Yang YN, Wu HQ, Khan MA, Zhang SL, Liu QZ (2011) Molecular analysis of eight SFB alleles and a new SFB-like gene in Prunus pseudocerasus and Prunus speciosa. Tree Genet Genome 7:891–902

    Article  Google Scholar 

  • Habu T, Matsumoto D, Fukuta K, Esumi T, Tao R, Yaegaki H, Yamaguchi M, Matsuda M, Konishi T, Kitajima A, Yamada T (2008) Cloning and characterization of twelve S-RNase alleles in Japanese apricot (Prunus mume Sieb. et Zucc). J Jpn Soc Hortic Sci 77:374–381

    Article  CAS  Google Scholar 

  • Hajilou J, Grigorian V, Mohammadi SA, Nazemmieh A, Romero C, Vilanova S, Burgos L (2006) Self- and cross- (in)compatibility between important apricot cultivars in northwest Iran. J Hortic Sci Biotechnol 81(3):513–517

    Google Scholar 

  • Heng W, Wu J, Wu HQ, Tao ST, Qi KJ, Gu C, Zhang SL (2012) Identification and characterisation of SFBs in Prunus mume. Plant Mol Biol Report 4:878–884

    Article  Google Scholar 

  • Hou JH, Gao ZH, Zhang Z, Chen SM, Ando T, Zhang JY, Wang XW (2011) Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Report 29:473–480

    Article  CAS  Google Scholar 

  • Huang SX, Wu HQ, Li YR, Wu J, Zhang SJ, Heng W, Zhang SL (2008) Competitive interaction between two functional S-haplotypes confer self-compatibility on tetraploid Chinese cherry (Prunus pseudocerasus Lindl. CV. Nanjing Chuisi). Plant Cell Rep 27:1075–1085

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Ushijima K, Yamane H, Tao R, Hauck N, Sebolt AM, Iezzoni AF (2005) Linkage and physical distances between S-haplotype S-RNase and SFB genes in sweet cherry. Sex Plant Reprod 17:289–296

    Article  CAS  Google Scholar 

  • Janssens GA, Goderris IG, Broekaert WF, Broothaerts W (1995) A molecular method for S-allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698

    Article  CAS  Google Scholar 

  • Jiang N, Tan XF (2007) Identification technology for pear cultivar S-genotype based on genechips. J Cent South Univ Technol 27(1):104–108

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Ma PQ, Ding XJ (2003) The role of environment on genes. Bull Biol 2:17–18

    Google Scholar 

  • Ma Y, Ma RC (2006) Analysis on polymorphism of S gene in almond. Acta Hortic Sin 33:137–139

    CAS  Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AD (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955–957

    Article  PubMed  CAS  Google Scholar 

  • McCubbin AG, Kao TH (2000) Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell Dev Biol 16:333–364

    Article  PubMed  CAS  Google Scholar 

  • Miyake M, Yamaguchi M, Haji T (1995) The self-compatibility in mume cultivars (in Japanese). J Jpn Soc Hortic Sci 64(suppl 2):116–117

    Google Scholar 

  • Moriya Y, Yamamato K, Okada K, Iwanami H, Bessho H, Nakanishi T, Takasaki T (2007) Development of a CAPS marker system for genotyping European pear cultivars harboring 17 S alleles. Plant Cell Rep 26:345–354

    Article  PubMed  CAS  Google Scholar 

  • Ortega E, Bŏsković R, Sargent DJ, Tobutt KR (2006) Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Gen Genomics 276:413–426

    Article  CAS  Google Scholar 

  • Raz A, Stern RA, Bercovich D, Goldway M (2009) SFB-based S-haplotyping of apricot (Prunus armeniaca) with DHPLC. Plant Breed 128:707–771

    Article  CAS  Google Scholar 

  • Romero C, Vilanova S, Burgos L, Martinez-Calvo J, Vicente M, Llacer G, Badenes ML (2004) Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol Biol 56:145–157

    Article  PubMed  CAS  Google Scholar 

  • Sakurai K, Brown SK, Weeden NF (2000) Self-incompatibility alleles of apple cultivars and advanced selection. Hortic Sci 35:116–119

    CAS  Google Scholar 

  • Sapir G, Stern RA, Eisikowitch D, Goldway M (2004) Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis. J Hortic Sci Biotechnol 79:223–227

    CAS  Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1992) Self-incompatibility-related RNases in the style of Japanese pear (Pyrus serotina Rehd.). Plant Cell Physiol 33:811–814

    CAS  Google Scholar 

  • Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol Gen Genet 250:547–557

    PubMed  CAS  Google Scholar 

  • Shen YY, Ding XJ, Wang F, Cai BH, Gao ZH, Zhang Z (2011) Analysis of genetic diversity in Japanese apricot (Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers. Sci Hortic 132:50–58

    Article  CAS  Google Scholar 

  • Sonneveld T, Tobutt KR, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Genet 107:1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Sutherland BG, Robbins TP, Tobutt KR (2004) Primers amplifying a range of Prunus S-alleles. Plant Breed 123:582–584

    Article  CAS  Google Scholar 

  • Sutherland BG, Tobutt KR, Robbins TP (2008) Trans-specific S-RNase and SFB alleles in Prunus self-incompatibility haplotypes. Mol Genet Genomics 279:95–106

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Isogai A (2005) A self-incompatibility in plants. Annu Rev Plant Biol 56:467–489

    Article  PubMed  CAS  Google Scholar 

  • Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124:224–233

    CAS  Google Scholar 

  • Tao R, Habu T, Yamane H, Sugiura A, Iwamoto K (2000) Molecular markers for self-compatibility in Japanese apricot (Prunus mume). HortScience 35:1121–1123

    CAS  Google Scholar 

  • Tao R, Habu T, Namba A, Yamane H, Fuyuhiro F, Iwamoto K, Sugiura A (2002) Inheritance of S f -RNase in Japanese apricot (Prunus mume) and its relation to self-compatibility. Theor Appl Genet 105:222–228

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268

    Article  PubMed  CAS  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    Article  PubMed  CAS  Google Scholar 

  • Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J 39:573–586

    Article  PubMed  CAS  Google Scholar 

  • Vilanova S, Romero C, Llacer G, Badenes ML (2005) Identification of self-(in)compatibility alleles in apricot by PCR and sequence analysis. J Am Soc Hortic Sci 130(6):893–898

    CAS  Google Scholar 

  • Vilanova S, Badenes ML, Burgos L, Martinez-Calvo J, Llacer G, Romero C (2006) Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiol 142:629–641

    Article  PubMed  CAS  Google Scholar 

  • Wang PP, Shi T, Zhuang WB, Zhang Z, Gao ZH (2012) Determination of S-RNase genotypes and isolation of four novel S-RNase genes in Japanese apricot (Prunus mume Sieb. et Zucc.) native to China. J Hortic Sci Biotechnol 87:266–270

    CAS  Google Scholar 

  • Wu SJ, Chen XS (2003) RAPD analysis of apricot cultivars. J Fruit Sci 20:108–111

    Google Scholar 

  • Wu J, Gu C, Zhang SL, Zhang SJ, Song HF, Zhao XP, Liu TZ (2008) Detection and sequence analyses of S-RNase gene in eleven Chinese apricot (Prunus armeniaca) cultivars. J Nanjing Agric Univ 31:37–42

    Google Scholar 

  • Wu J, Gu C, Zhang SL, Zhang SJ, Wu HQ, Heng W (2009) Identification of S-haplotype-specific S-RNase and SFB alleles in native Chinese apricot (Prunus armeniaca L.). J Hortic Sci Biotechnol 84:645–652

    CAS  Google Scholar 

  • Xu JX, Gao ZH, Hou JH, Wang S, Zhang Z (2008) Optimization of AS-PCR analysis system of Japanese apricot (Prunus mume Sieb. et Zucc). J Agric Sci 2:69–71

    Google Scholar 

  • Xu JX, Gao ZH, Zhang Z (2010) Identification of S-genotypes and novel S-RNase alleles in Japanese apricot cultivars native to China. Sci Hortic 123:459–463

    Article  CAS  Google Scholar 

  • Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814

    PubMed  CAS  Google Scholar 

  • Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, Yamaguchi M (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sex Plant Reprod 13:251–257

    Article  CAS  Google Scholar 

  • Yamane H, Tao R, Sugiura A, Hauck HR, Iezzoni AF (2001) Identification and characterization of S-RNases in tetraploid sour cherry (Prunus cerasus). J Am Soc Hortic Sci 126:661–667

    CAS  Google Scholar 

  • Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R (2003a) A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol 44:764–769

    Article  PubMed  CAS  Google Scholar 

  • Yamane H, Ushijima K, Sassa H, Tao R (2003b) The use of the S haplotype-specific F-box protein gene, SFB, as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot (Prunus mume). Theor Appl Genet 107:1357–1361

    Article  PubMed  CAS  Google Scholar 

  • Zhang SJ, Huang SX, Heng W, Wu HQ, Wu J, Zhang SL (2008) Identification of S-genotypes in 17 Chinese cultivars of Japanese plum (Prunus salicina Lindl.) and molecular characterization of 13 novel S-alleles. J Hortic Sci Biotechnol 83:635–640

    CAS  Google Scholar 

  • Zhang YJ, Zhao ZH, Xue YB (2009) Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol 60:21–42

    Article  PubMed  CAS  Google Scholar 

  • Zhang XG, Yin DM, Ma CZ, Fu TD (2011) Phylogenetic analysis of S-locus genes reveals the complicated evolution relationship of S haplotypes in Brassica. Plant Mol Biol Report 29:481–488

    Article  Google Scholar 

  • Zisovich AH, Stern RA, Sapir G, Shafir S, Goldway M (2004) The RHV region of S-RNase in the European (Pyrus communis) is not required for the determination of specific pollen rejection. Sex Plant Reprod 17:151–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Special Fund for Agro-Scientific Research in the Public Interest of the Ministry of Agriculture of China (201003058), the National Science Foundation of China (31101526) and the Jiangsu Province Agriculture Independent Innovation System Project [CX(12)2011] for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiHong Gao.

Additional information

Zhihong Gao and Peipei Wang are the co-first authors and contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Wang, P., Zhuang, W. et al. Sequence Analysis of New S-RNase and SFB alleles in Japanese Apricot (Prunus mume). Plant Mol Biol Rep 31, 751–762 (2013). https://doi.org/10.1007/s11105-012-0535-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0535-2

Keywords

Navigation