Skip to main content
Log in

Comparative Proteomic Analysis of the Effects of Salicylic Acid and Abscisic Acid on Maize (Zea mays L.) Leaves

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The phytohormones salicylic acid (SA) and abscisic acid (ABA) play essential roles in regulating plant growth, development, and stress responses. Using a proteomics-based approach, we compared the roles of SA and ABA in the modulation of the proteome of maize leaves. Fifty-six protein spots that showed significant expression changes on 2-DE were identified by MALDI-TOF-MS/MS. Of these, three different proteins were regulated by both SA and ABA, with consistent or inconsistent expression patterns, suggesting the synergistic and antagonistic effects of SA and ABA. The classification of differentially expressed proteins showed that both SA and ABA responsive proteins were mainly involved in photosynthesis, stress and defense response, energy and metabolism, and protein turnover. Quantitative real-time PCR analysis for selected SA and ABA responsive proteins showed that individual protein change was not predictable based on transcriptome level. This study represents the first attempt at global proteome profiling in response to SA and ABA, and it provides a better understanding of the molecular mechanisms regulated by SA and ABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defences in Arabidopsis. Plant Cell 19:1665–1681

    Article  PubMed  CAS  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Hake S (2009) Handbook of maize: genetics and genetics. Springer, New York

    Book  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  PubMed  CAS  Google Scholar 

  • Böhmer M, Schroeder J (2011) Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J 67:105–118

    Article  PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance: annual review plant physiology. Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  Google Scholar 

  • Chan ZL, Wang Q, Xu XB, Meng XH, Qin G, Li B, Tian S (2008) Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics 8:4791–4807

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–437

    Article  PubMed  CAS  Google Scholar 

  • Drincovich MF, Casati P, Andreo CS (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett 9:1–6

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Feller U, Fischer A (1994) Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci 13:241–273

    CAS  Google Scholar 

  • Gális I, Smith JL, Jameson PE (2004) Salicylic acid-, but not cytokinin-induced, resistance to WClMV is associated with increased expression of SA-dependent resistance genes in Phaseolus vulgaris. J Plant Physiol 161:459–466

    Article  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  • Guan LL, Wang YB, Shen H, Hou K, Xu YW, Wu W (2012) Molecular cloning and expression analysis of genes encoding two microsomal oleate desaturases (FAD2) from safflower (Carthamus tinctorius L.). Plant Mol Biol Report 30:139–148

    Article  CAS  Google Scholar 

  • Henriksson LM, Johansson P, Unge T, Mowbray SL (2004) X-ray structure of peptidyl-prolyl cis–trans isomerase A from Mycobacterium tuberculosis. Eur J Biochem 271:4107–4113

    Article  PubMed  CAS  Google Scholar 

  • Høj PB, Fincher GB (1995) Molecular evolution of plant β-glucan endohydrolases. Plant J 7:367–379

    Article  PubMed  Google Scholar 

  • Hong Y, Peng J, Jiang W, Fu Z, Liu J, Shi Y, Li X, Lin J (2011) Proteomic analysis of Schistosoma japonicum schistosomulum proteins that are differentially expressed among hosts differing in their susceptibility to the infection. Mol Cell Proteomics 10(8):M110.006098

    Article  PubMed  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  PubMed  CAS  Google Scholar 

  • Mills DA, Richter ML (1991) Nucleotide binding to the isolated β subunit of the chloroplast ATP synthase. J Biol Chem 226:7440–7444

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Peat TS, Newman J, Waldo GS, Berendzen J, Terwilliger TC (1998) Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75 A resolution. Structure 6:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nature Chem Biol 5:308–316

    Article  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Rinalducci S, Egidi MG, Mahfoozi S, Godehkahriz SJ, Zolla L (2011) The influence of temperature on plant development in a vernalization-requiring winter wheat: a 2-DE based proteomic investigation. J Proteomics 74:643–659

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Antonia OM, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  PubMed  CAS  Google Scholar 

  • Spreitzer RJ (2003) Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414:141–149

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 141:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Tan M, Duan H, Swaroop M (2001) SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions. Antioxid Redox Signal 3:635–650

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaced role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  PubMed  CAS  Google Scholar 

  • Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F (2009) Network properties of robust immunity in plants. PLoS Genet 5:e1000772

    Article  PubMed  Google Scholar 

  • van Leeuwen H, Kliebenstein DJ, West MA, Kim K, van Poecke R, Katagiri F, Michelmore RW, Doerge RW, St Clair DA (2007) Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell 19:2099–2110

    Article  PubMed  Google Scholar 

  • Volt AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  Google Scholar 

  • Wasilewskaa A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  Google Scholar 

  • Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  PubMed  CAS  Google Scholar 

  • Wu LJ, Wang XT, Wu LC, Wang PA, Chen YC (2011) Molecular cloning and expression analysis of an HINT1 homologue from maize (Zea mays L.). Plant Mol Biol Rep 29:1006–1012

    Article  CAS  Google Scholar 

  • Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization–mass spectrometry. Electrophoresis 21:3666–3672

    Article  PubMed  CAS  Google Scholar 

  • You XR, Wang LX, Liang WY, Gai YH, Wang XY, Chen W (2012) Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses. J Proteomics 75:1099–1118

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Wang Y, Wang C, Wei Z, Xia D, Wang Y, Liu G, Yang C (2011) Time-course analysis of levels of indole-3-acetic acid and expression of auxin-responsive GH3 Genes in Betula platyphylla. Plant Mol Biol Rep 29:898–905

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jianying Li for the statistical analysis and helpful discussion. We also thank Gabriel Sanglay for critical reading of the manuscript. This work was supported by the National Natural Science Foundation of China (31101158) and National Program on Key Basic Research Project (2011CB111500).

Conflict of Interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Chen.

Additional information

Liuji Wu and Xiaofeng Zu contributed equally to this study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 26 kb)

ESM 2

(DOC 28 kb)

ESM 3

(DOC 48 kb)

ESM 4

(DOC 255 kb)

ESM 5

(DOC 1825 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Zu, X., Wang, X. et al. Comparative Proteomic Analysis of the Effects of Salicylic Acid and Abscisic Acid on Maize (Zea mays L.) Leaves. Plant Mol Biol Rep 31, 507–516 (2013). https://doi.org/10.1007/s11105-012-0522-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0522-7

Keywords

Navigation