Skip to main content
Log in

Post-translational regulation of plasma membrane H+-ATPase is involved in the release of biological nitrification inhibitors from sorghum roots

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

It is an integral property of sorghum (Sorghum bicolor L.) to extensively release biological nitrification inhibitors (BNIs) under NH4+ nutrition, in comparison to NO3 nutrition. Our previous research indicated that plasma membrane (PM) H+-ATPase activity was stimulated by NH4+ and low rhizosphere pH, which in turn provided the driving force for BNIs release from sorghum roots. However, the regulatory mechanism of PM H+-ATPase itself in this regard is not fully elucidated. The present study thus aims at post-translational regulation of PM H+-ATPase via phosphorylation in response to NH4+ nutrition and its functional link to the release of BNIs from sorghum roots.

Methods

A hydroponic system is used to grow sorghum with 1 mM NH4+ or NO3 as N source at pH 3.0 or pH 7.0 in root medium for the analysis of PM H+-ATPase and BNIs release. The effect of NH4+ on the regulation of PM H+-ATPase was further evaluated by the treatment of NO3cultivated sorghum roots with different NH4+ concentrations (0.1~1 mM). In addition, fusicoccin (a stimulator of PM H+-ATPase) and vanadate (an inhibitor of PM H+-ATPase) were added to check the effect of PM H+-ATPase phosphorylation on BNIs release. Further, methionine sulphoximine (MSX), which inhibits glutamine synthetase, is used to analyze the effect of ammonium transport/assimilation process on the PM H+-ATPase and BNIs release. Microsomal membrane protein isolated from these roots was used for the test of PM H+-ATPase phosphorylation level by western blot technique. Meanwhile, the root exudates were collected for the analysis of BNIs.

Results

Higher amount of PM H+-ATPase protein with higher phosphorylation level were detected in sorghum roots in response to NH4+ and low rhizosphere pH, as compared to NO3 and high pH. Further, PM H+-ATPase protein amount and phosporylation level were dependent on the local supplement of NH4+ (from 0.1 ~ 1 mM) to roots. Nevertheless, the enhanced posphorylation level under all of these treatments was significantly higher than the enhanced protein level of PM H+ ATPase. Unlike protein level, phosphorylation level is closely correlated to the release of BNIs from sorghum roots. In addition, phosphorylation level of PM H+-ATPase adjusted by fusicoccin or vanadate directly affected the release of BNIs, irrespective of the protein level. In addition, ammonium assimilation inhibitor MSX caused decreased phosphorylation level of PM H+-ATPase without affecting the protein level, meanwhile inhibited the release of BNIs from sorghum roots.

Conclusion

Our research suggests that phosphorylation of PM H+-ATPase is one of the important regulation mechanisms involved in the release of BNIs from sorghum roots. NH4+ stimulated PM H+-ATPase phosphorylation via excessive H+ generated by NH4+ assimilation in cytoplasm. The up regulation of PM H+-ATPase at post-translational level thus activated the H+ pumping activity to provide the driving force for BNIs release. A new hypothesis is proposed to elucidate the interplay of these functionally inter-linked processes involving ammonium-uptake, −assimilation, and H+-pumps activation in PM on the release of BNIs from sorghum roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasi MK, Adams WA (1998) Loss of nitrogen in compacted grassland soil by simultaneous nitrification and denitrification. Plant Soil 200:265–277

    Article  CAS  Google Scholar 

  • Amberger A (1989) Research on dicyandiamide as a nitrification inhibitor and future outlook. Commun Soil Sci Plant Anal 20:1933–1955

    Article  CAS  Google Scholar 

  • Arango M, Gevaudant F, Oufattole M, Boutry M (2003) The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 216:355–365

    Article  CAS  PubMed  Google Scholar 

  • Coskun D, Britto DT, Shi WM, Kronzucker HJ (2017) Nitrogen transformations inmodern agriculture and the role of biological nitrification inhibition. Nature Plants 3:17074

    Article  CAS  PubMed  Google Scholar 

  • Di T, Afzal MR, Yoshihashi T, Deshpande S, Zhu Y, Subbarao GV (2018) Further insights into underlying mechanisms for the release of biological nitrification inhibitors from sorghum roots. Plant Soil 423:99–110

    Article  CAS  Google Scholar 

  • Falhof J, Pedersen JT, Fuglsang AT, Palmgren M (2016) Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant 9:323–337

    Article  CAS  PubMed  Google Scholar 

  • Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruta M, Gray WM, Sussman MR (2015) Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Curr Opin Plant Biol 28:68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Nakamura S, Takemiya A, Takahashi Y, Shimazaki K, Kinoshita T (2010) Biochemical characterization of in vitro phosphorylation and dephosphorylation of the plasma membrane H+-ATPase. Plant Cell Physiol 51:1186–1196

    Article  CAS  PubMed  Google Scholar 

  • Haynes RJ, Goh KM (1978) Ammonium and nitrate nutrition of plants. Biol Rev 53:465–510

    Article  CAS  Google Scholar 

  • Hossain AKMZ, Subbarao GV, Pearse SJ, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono Yoshida MH (2008) Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum Bicolor). New Phytol 180:442–451

    Article  CAS  Google Scholar 

  • Inoue S, Kinoshita T (2017) Blue light regulation of stomatal opening and the plasma membrane H+ -ATPase. Plant Physiol 174:531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson F, Sommarin M, Larsson C (1993) Fusicoccin activates the plasma membrane H+-ATPase by a mechanism involving the C terminal inhibitory domain. Plant Cell 5:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizospheres of wetland plants: a modelling study. Ann Bot 96:639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larsson C (1985) Plasma membrane. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis. Springer-Verlag, Berlin, pp 85–104

    Google Scholar 

  • Maathuis FJ, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    Article  CAS  PubMed  Google Scholar 

  • Marschner H. 1995. Mineral Nutrition of Plants, 2nd ed. Academic Press, London.

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Mengel K, Robin P, Salsac L (1983) Nitrate reductase activity in shoots and roots of maize seedlings as affected by the form of nitrogen nutrition and the pH of the nutrient solution. Plant Physiol 71:618–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menz J, Li Z, Schulze WX, Ludewig U (2016) Early nitrogen-deprivation responses in Arabidopsis root reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. Plant J 88:717–734

    Article  CAS  PubMed  Google Scholar 

  • Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6:1711–1726

    Article  PubMed  CAS  Google Scholar 

  • Okumura M, Inoue S, Takahashi K, Ishizaki K, Kohchi T, Kinoshita T (2012) Characterization of the plasma membrane H+-ATPase in the liverwort Marchantia polymorpha. Plant Physiol 159:826–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  • Palmgren M, Harper J (1999) Pumping with plant P-type ATPases. J Exptl Bot 50:883–893

    Article  CAS  Google Scholar 

  • Palmgren MG, Sommarin M, Serrano R, Larsson C (1991) Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase. J Biol Chem 266:20470–20475

    Article  CAS  PubMed  Google Scholar 

  • Pearson J, Stewart GR (1993) The deposition of atmospheric ammonia and its effects on plants. New Phytol 125:283–305

    Article  CAS  PubMed  Google Scholar 

  • Pii Y, Alessandrini M, Dall’Osto L, Guardini K, Prinsi B, Espen L, Zamboni A, Varanini Z (2016) Time-resolved investigation of molecular components involved in the induction of NO3 high affinity transport system in maize roots. Front Plant Sci 7:1657

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubert S, Yan F (1997) Nitrate and ammonium nutrition of plants: effects on acid/base balance and adaptation of root cell plasmalemma H+-ATPase. Zeitschrift für Panzenphysiologie und Bodenkunde 160:275–281

    Article  CAS  Google Scholar 

  • Serrano R (1989) Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol Plant Mol Biol 40:61–94

    Article  CAS  Google Scholar 

  • Slangen J, Kerkhoff P (1984) Nitrification inhibitors in agriculture and horticulture: a literature review. Fertil Res 5:1–76

    Article  CAS  Google Scholar 

  • Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006) A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112

    Article  CAS  Google Scholar 

  • Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007) Biological nitrification inhibition (BNI) – is it a widespread phenomenon? Plant Soil 294:5–18

    Article  CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Nat Acad Sci (PNAS) (USA) 106:17302–17307

    Article  CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Ishikawa T, Ono H, Yoshida M, Yoshihashi T, Zhu Y, Zakir HAKM, Deshpande SP, Hash CT, Sahrawat KL (2013) Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366:243–259

    Article  CAS  Google Scholar 

  • Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, Rao IM, Lata JC, Kishii M, Braun HJ (2015) Suppression of soil nitrification by plants. Plant Sci 233:155–164

    Article  CAS  PubMed  Google Scholar 

  • Subbarao GV, Arango J, Masahiro K, Hooper AM, Yoshihashi T, Ando Y, Nakahara K, Deshpande S, Ortiz-Monasterio I, Ishitani M, Peters M, Chirinda N, Wollenberg L, Lata JC, Gerard B, Tobita S, Rao IM, Braun HJ, Kommerell V, Tohme J, Iwanaga M (2017) Genetic mitigation strategies to tackle agricultural GHG emissions: the case for biological nitrification inhibition technology. Plant Sci 262:165–168

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Lu YF, Yu FW, Kronzucker HJ, Shi WM (2016) Biological nitrificationinhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol 212:646–656

    Article  CAS  PubMed  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Hayashi K, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159:632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka JP, Nardi P, Wissuwa M (2010) Nitrification inhibition activity, a novel trait in root exudates of rice. AoB Plants 2010:plq014

    Google Scholar 

  • Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E (2009) Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell Environ 32:465–475

    Article  CAS  PubMed  Google Scholar 

  • Tsehaye T, Yoshinaga H, Deshpande SP, Srinivasa Rao P, Sahrawat KL, Ando Y, Nakahara K, Hash CT, Subbarao GV (2014) Biological nitrification inhibition in sorghum: the role of sorgoleone production. Plant Soil 379:325–335

    Article  CAS  Google Scholar 

  • Ullrich CI, Novacky A (1990) Extra- and intracellular pH and membrane potential changes induced by K+, Cl, H2PO4 and NO3 uptake and fusicoccin in root hairs of Limnobium stoloniferum. Plant Physiol 94:1561–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ, Glass A (1993) Ammonium uptake by rice roots. II. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiol 103:1259–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MY, Glass ADM, Shaff JE, Kochian LV (1994) Ammonium uptake by rice roots. Plant Physiol 104:899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Feuerle R, Schaffer S, Fortmeier H, Schubert S (1998) Adaptation of active proton pumping and plasmalemma H+- ATPase activity of corn roots to low root medium pH. Plant Physiol 117:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Zhu Y, Müller C, Zörb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Di T, Zhu Y, Subbarao GV (2016) Transcriptional response of plasma membrane H+ ATPase genes to ammonium nutrition and its functional link to the release of biological nitrification inhibitors from sorghum roots. Plant Soil 398:301–312

    Article  CAS  Google Scholar 

  • Zerulla W, Barth T, Dressel J, Erhardt K, Von-Locquenghien KH, Pasda G, Radle M, Wissemeier H (2001) 3,4-Dimethylpyrazole phosphate (DMPP) - a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils 34:79–84

    Article  CAS  Google Scholar 

  • Zhang X, Lu Y, Yang T, Kronzucker HJ, Shi W (2019) Factors influencing the release of the biological nitrification inhibitor 1, 9-decanediol from rice (Oryza sativa L.) roots. Plant Soil 436:253–265

    Article  CAS  Google Scholar 

  • Zhu Y, Yan F, Zörb C, Schubert S (2005) A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? Plant Cell Physiol 46:892–901

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F, Shen Q (2009) Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ 32:1428–1440

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zeng HQ, Shen QR, Ishikawa T, Subbarao GV (2012) Interplay among NH4+ uptake, rhizosphere pH and plasma membrane H+-ATPase determine the release of BNIs in sorghum roots – possible mechanisms and underlying hypothesis. Plant Soil 358:131–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research presented here is funded by Natural Science Foundation of China (NSFC 31471937 and 31172035). Funding support also came from grant-in-Aid for scientific research from Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF) to JIRCAS under BNI project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guntur Venkata Subbarao or Yiyong Zhu.

Additional information

Editorial Responsibility: Ad C. Borstlap

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 7.11 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, M.R., Zhang, M., Jin, H. et al. Post-translational regulation of plasma membrane H+-ATPase is involved in the release of biological nitrification inhibitors from sorghum roots. Plant Soil 450, 357–372 (2020). https://doi.org/10.1007/s11104-020-04511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04511-6

Keywords

Navigation