Skip to main content

Advertisement

Log in

Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

An Erratum to this article was published on 29 March 2014

Abstract

Background and aims

We studied the effect of different biochar (BC) application rates on soil properties, crop growth dynamics and yield on a fertile sandy clay loam in boreal conditions.

Methods

In a three-year field experiment conducted in Finland, the field was divided into three sub-experiments with a split-plot experimental design, one for each crop: wheat (Triticum aestivum), turnip rape (Brassica rapa), and faba bean (Vicia faba). The main plot factor was BC rate (0, 5 and 10 t DM ha−1) and the sub-plot factor was the N-P-K fertiliser rate. Soil physico-chemical properties as well as plant development, yield components and quality were investigated.

Results

BC addition did not significantly affect the soil chemical composition other than the increased C and initially increased K contents. Increased soil moisture content was associated with BC application, especially at the end of the growing seasons. BC decreased the N content of turnip rape and wheat biomass in 2010, thus possibly indicating an initial N immobilisation. In dry years, the seed number per plant was significantly higher in faba bean and turnip rape when grown with BC, possibly due to compensation for decreased plant density and relieved water deficit. However, the grain yields and N uptake with BC addition were not significantly different from the control in any year.

Conclusions

Even though BC application to a fertile sandy clay loam in a boreal climate might have relieved transient water deficit and thereby supported yield formation of crops, it did not improve the yield or N uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191

    Article  Google Scholar 

  • Aksouh NM, Jacobs BC, Stoddard FL, Mailer R (2001) Response of canola to different heat stresses. Aust J Agric Res 52:817–824

    Article  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Altenbach SB, DuPont FM, Kothari KM, Chan R, Johnson EL, Lieu D (2003) Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J Cereal Sci 37:9–20

    Article  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • ARA (2013) Maatalouden ympäristötuen sitoumusehdot 2013. Agency for Rural Affairs. http://www.mavi.fi/attachments/mavi/ymparistotuki/6FRzGaeg7/Maatelouden_ymparistotuen_sitoumusehdot_2013.pdf (in Finnish). Accessed 23 May 2013

  • Arif M, Ali A, Umair M, Munsif F, Ali K, Inamullah MS, Ayub G (2012) Effect of biochar, FYM and mineral nitrogen alone and in combination on yield and yield components of maize. Sarhad J Agric 28:191–195

    Google Scholar 

  • Asai H, Samson BK, Haefele SM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res 111:81–84

    Article  Google Scholar 

  • ASTM D3175–02 (2002) Standard test method for volatile matter in the analysis sample of coal and coke. American Society for Testing and Materials, Conshohocken

    Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Blackwell P, Krull E, Butler G, Herbert A, Solaiman Z (2010) Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Aust J Soil Res 48:531–545

    Article  Google Scholar 

  • Brockhoff SR, Christians NE, Killorn RJ, Horton R, Davis DD (2010) Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron J 102:1627–1631

    Article  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Busscher WJ, Novak JM, Evans DE, Watts DW, Niandou MAS, Ahmedna M (2010) Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci 175:10–14

    Article  CAS  Google Scholar 

  • Champolivier L, Merrien A (1995) Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agron 5:153–160

    Article  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634. doi:10.1071/SR07109

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Chen Y, Shinogi Y, Taira M (2010) Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality. Aust J Soil Res 48:526–530

    Article  Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD (2008) Stability of black carbon in soils across a climatic gradient. J Geophys Res. doi:10.1029/2007JG000642

    Google Scholar 

  • Dane JH, Hopmans JW (2002) Water retention and storage. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part. 4. SSSA book ser. 5. Soil Science Society of America, Madison, pp 671–796

    Google Scholar 

  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270

    Article  CAS  Google Scholar 

  • Eastman CM (2011) Soil physical characteristics of an Aeric Ochraqualf amended with Biochar. MSc thesis. Ohio State University

  • Fábián A, Jäger K, Rakszegi M, Barnabás B (2011) Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to water deficit stress. Plant Cell Rep 30:551–563

    Article  PubMed  CAS  Google Scholar 

  • FAO (2006) World reference base for soil resources. World soil resources report 103. FAO, Rome

    Google Scholar 

  • FMI (2012) Monthly climatological statistics of Finland. Finnish Meteorological Institute. http://ilmatieteenlaitos.fi/kuukausitilastot. Accessed 16 March 2012

  • FMI (2013) Monthly climatological statistics of Finland. Finnish Meteorological Institute. http://ilmatieteenlaitos.fi/kuukausitilastot. Accessed 17 January 2013

  • Gaskin JW, Speir A, Morris LM, Ogden L, Harris K, Lee D, and Das KC (2007) Potential for pyrolysis char to affect soil moisture and nutrient status of loamy sand soil. Proceedings of the 2007 Georgia Water Resources Conference, March 27–29, 2007 at the University of Georgia

  • Genesio L, Miglietta F, Lugato E, Baronti S, Pieri M, Vaccari FP (2012) Surface albedo following biochar application in durum wheat. Environ Res Lett. doi:10.1088/1748-9326/7/1/014025

    Google Scholar 

  • Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496

    Article  CAS  Google Scholar 

  • Graber ER, Tsechansky L, Gerstl Z, Lew B (2012) High surface area biochar negatively impacts herbicide efficacy. Plant Soil 353:95–106

    Article  CAS  Google Scholar 

  • Güereña D, Lehmann J, Hanley K, Enders A, Hyland C, Riha S (2012) Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil. doi:10.1007/s11104-012-1383-4

    Google Scholar 

  • Gundale MJ, DeLuca TH (2007) Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biol Fertil Soils 43:303–311

    Article  CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V, O’Toole A, Sundqvist KL, Arp HPH, Cornelissen G (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838

    Article  PubMed  CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35:823–830

    Article  CAS  Google Scholar 

  • Jones JB, Steyn WJA (1973) Sampling, handling and analyzing plant tissue samples. In: Walsh LM, Beaton JD (eds) Soil testing and plant analysis. ASA-SSSA Inc, Madison, pp 249–270

    Google Scholar 

  • Jones BEH, Haynes RJ, Phillips IR (2010) Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J Environ Manage 91:2281–2288

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Kammann CI, Linsel S, Gössling J, Koyro H-W (2011) Influence of biochar on water deficit tolerance of Chenopodium quinoa willd and on soil-plant relations. Plant Soil 345:195–210. doi:10.1007/s11104-011-0771-5

    Article  CAS  Google Scholar 

  • Kammann CI, Ratering S, Eckhard C, Müller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Kimetu J, Lehmann J, Ngoze S, Mugendi D, Kinyangi J, Riha S, Verchot L, Recha J, Pell A (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. In: symposium on forest products research. Int Achieve Future 5:12–23

    Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010a) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Wang B, Horton R, Karlen DL (2010b) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Silva JJP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull E (2008) Australian climate-carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Lentz RD, Ippolito JA (2012) Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J Environ Qual 41:1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Li P, Chen J, Wu P (2011) Agronomic characteristics and grain yield of 30 spring wheat genotypes under water deficit stress and nonstress conditions. Agron J 103:1619–1628

    Article  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Liu J, Schulz H, Brandl S, Miehtke H, Huwe B, Glaser B (2012) Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J Plant Nutr Soil Sci. doi:10.1002/jpln.201100172

    Google Scholar 

  • López-Bellido FJ, Lopez-Bellido LO, López-Bellido RJ (2005) Competition, growth and yield of faba bean (Vicia faba L.). Eur J Agron 23:359–378

    Article  Google Scholar 

  • Major J, Rondon M, Molina D, Riha S, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna Oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2012) Nutrient leaching in a Colombian savanna Oxisol amended with biochar. J Environ Qual 41:1076–1086. doi:10.2134/jeq2011.0128

    Article  PubMed  CAS  Google Scholar 

  • Manschadi AM, Sauerborn J, Stützel H, Göbel W, Saxena MC (1998) Simulation of faba bean (Vicia faba L.) root system development under Mediterranean conditions. Eur J Agron 9:259–272

    Article  Google Scholar 

  • McGregor DI (1987) Effect of plant density on development and yield of rapeseed and its significance to recovery from hail injury. Can J Plant Sci 67:43–51

    Article  Google Scholar 

  • Meier U (ed) (2001) Growth stages of mono- and dicotyledonous plants. BBCH-Monograph. Federal Biological Research Centre for Agriculture and Forestry. Blackwell Wissenschafts–Verlag, Berlin, pp 6–36

    Google Scholar 

  • Nelson NO, Agudelo SC, Yuan WQ, Gan J (2011) Nitrogen and phosphorus availability in biochar-amended soils. Soil Sci 176:218–226

    CAS  Google Scholar 

  • Nielsen DC (1997) Water use and yield of canola under dryland conditions in the central Great Plains. J Prod Agric 10:307–313

    Article  Google Scholar 

  • Novak JM, Lima IM, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. AES 3:195–206

    CAS  Google Scholar 

  • Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MAS (2010) Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154:281–288

    Article  CAS  Google Scholar 

  • Passioura J (2004) Water use efficiency on the farmers’ fields. In: Bacon MA (ed) Water use efficiency in plant biology. Blackwell Publishing, Oxford, pp 302–318

    Google Scholar 

  • Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112:159–166

    Article  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Phil Trans R Soc B 360:2021–2035. doi:10.1098/rstb.2005.1752

    Article  PubMed Central  PubMed  Google Scholar 

  • Quilliam RS, Marsden KA, Gertler C, Rousk J, DeLuca TH, Jones DL (2012) Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agr Ecosyst Environ 158:192–199

    Article  CAS  Google Scholar 

  • Rajala A, Hakala K, Mäkelä P, Muurinen S, Peltonen-Sainio P (2009) Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crop Res 114:263–271

    Article  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284

    Article  CAS  Google Scholar 

  • Rodríguez L, Salazar P and Preston TR (2011) Effect of a culture of “native” micro-organisms, biochar and biodigester effluent on the growth of maize in acid soils. LRRD 23. http://www.lrrd.org/lrrd23/10/rodr23223.htm. Accessed 1 April 2012

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Silva G (2011) Fertilizer prices on the rise. Integrated pest management resources. http://msue.anr.msu.edu/news/fertilizer_prices_on_the_rise. Accessed 14 June 2012

  • Soil Survey Division Staff (1993) Soil survey manual, Agric. Handbook No. 18, USDA-NRCS. U.S Gov. Print. Office, Washington, DC

    Google Scholar 

  • Solaiman ZM, Blackwell P, Abbott LK, Storer P (2010) Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res 48:546–554

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899. doi:10.1002/jpln.200625199

    Article  CAS  Google Scholar 

  • Streubel JD (2011) Biochar: its characterization and utility for recovering phosphorus from anaerobic digested dairy effluent. Dissertation, Washington State University

  • Tammeorg P, Brandstaka T, Simojoki A, Helenius J (2012) Nitrogen mineralization dynamics of meat bone meal and cattle manure as affected by the application of softwood chips biochar in soil. Earth Env Sci T R S E 103:19–30

    CAS  Google Scholar 

  • Ugalde TD, Jenner CF (1990) Substrate gradients and regional patterns of dry matter deposition within developing wheat endosperm. I. Carbohydrates. Aust J Plant Physiol 17:377–394

    Article  CAS  Google Scholar 

  • USDA (2012) Average U.S. farm prices of selected fertilizers, 1960–2012. http://www.ers.usda.gov/Data/FertilizerUse/Tables/Table7.xls. Accessed 4 June 2012

  • USEPA (1996) Microwave assisted acid digestion of siliceous and organically based matrices. USEPA. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3052.pdf. Accessed 22 June 2012

  • Vaccari PF, Baronti S, Lugatoa E, Genesio L, Castaldi S, Fornasier F et al (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron. doi:10.1016/j.eja.2011.01.006

    Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan YK, Downie A, Rust J et al (2010a) Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Downie A, Morris S, Petty S, Rust J, Chan KY (2010b) A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Soil Res 48:569–576

    Article  CAS  Google Scholar 

  • Vuorinen J, Mäkitie O (1955) The method of soil testing in use in Finland. Agrogeological Publ 63:1–44

    Google Scholar 

  • Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Article  PubMed  CAS  Google Scholar 

  • Whaley JM, Sparkes DL, Foulkes MJ, Spink JH, Semere T, Scott RK (2000) The physiological response of winter wheat to reductions in plant density. Ann Appl Biol 137:165–177

    Article  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:1–9

    Article  PubMed Central  CAS  Google Scholar 

  • Yanai Y, Toyota K, Ozakaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, Zhang X (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351:263–275. doi:10.1007/s11104-011-0957-x

    Article  CAS  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sampo Tukiainen (Preseco Oy) for providing the biochar, Mikko Hakojärvi for his help with the TDR measurements, Markku Tykkyläinen for his technical assistance with the field experiments and Johanna Muurinen for her assistance with biochar and soil analysis. The contribution of Xiaoyulong Chen and Juho Honkala with yield component analyses is gratefully acknowledged. The authors thank Markku Yli-Halla and anonymous referees for their valuable suggestions and comments. This research was funded by Jenny and Antti Wihuri Foundation and Ministry of Agriculture and Forestry of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priit Tammeorg.

Additional information

Responsible Editor: Johannes Lehmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 783 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tammeorg, P., Simojoki, A., Mäkelä, P. et al. Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 374, 89–107 (2014). https://doi.org/10.1007/s11104-013-1851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1851-5

Keywords

Navigation