Skip to main content
Log in

Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

This article was aimed to explore the main rhizospherial properties of the Cd hyperaccumulator R. globosa compared to those of the non hyperaccumulator Rorippa palustris (Leyss.) Bess. representing the same genus (Rorippa) of Cruciferae.

Method

Pot culture experiments using soil spiked with Cd as CdCl2·2.5H2O and rhizobags were conducted to determine the differences in Cd accumulation vs. pH, dissolved organic carbon (DOC), Cd chemical fractionation, enzyme activities, and microorganism number in the rhizospheres of R. globosa and R. palustris, and in the bulk soils.

Results

Experiments on Cd uptake by R. globosa and R. palustris from soil spiked with different doses of Cd ranging from 0 to 40 mg∙kg−1, confirmed Cd-hyperaccumulating properties of R. globosa (Cd accumulation in the above-ground organs >100 mg kg−1, enrichment factor EF> 1, translocation factor TF> 1, no significant biomass reduction at Cd doses >10 mg kg−1) and the lack of such properties in R. palustris, which made these species suitable for comparative studies. The pH value was found to be a constant, specific property of the rhizosphere of R. globosa and R. palustris, and of the bulk soil, independent on the Cd dose, however the differences were rather small: by 0.2 unit lower in the rhizosphere of R. globosa, and only by 0.1 unit lower in the rhizosphere of R.. palustris compared to the bulk soil. Chemical fractionation of Cd, i.e. its affinity to pools of different binding strength, also appeared to be a specific feature of a rhizosphere and soil independent on the Cd dose. It exhibited a unique capability of the rhizosphere of the Cd-hyperaccumulator R. globosa to mobilize Cd, which enriched the most labile exchangeable fraction in 24.4 % and the immobile residual fraction in 42.3 %, compared to 19.3 % and 50.8 % in the bulk soil and in the rhizosphere of the non-hiperaccumulator R.palustris that did not show significant difference (p < 0.05) from the bulk soil. In turn, DOC concentrations, enzymatic (urease and catalase) activity and microorganism (bacteria, fungi and actinomycetes) growth in rhizosphere soils were largely influenced by different Cd doses, although they were always considerably higher in the rhizosphere soils of R globosa, than in the rhizosphere of R. palustris and in the bulk soil, in particular at Cd doses ≥10 mg kg−1.

Conclusion

pH and DOC changes in the rhizosphere of the Cd-hyperaccumulator R. globosa were found to be of a minor importance. The alteration of Cd chemical fractionation consisting in substantial reduction of the immobile residual pool and Cd enrichment primarily in the most labile exchangeable fraction, along with over 2-fold higher number of microorganisms was considered to be the driving force of Cd hyperaccumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboudrar W, Schwartz C, Benizri E, Morel JL, Boularbah A (2007) Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. Intern J Phytoremediat 9:41–52

    Article  CAS  Google Scholar 

  • Alford ÉA, Pilon-Smits EAH, Pashke MW (2010) Metallophytes – a view from the rhizosphere. Plant Soil 337:33–50

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131–146

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  PubMed  CAS  Google Scholar 

  • Christensen JB, Christensen TH (1999) Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ Sci Technol 33:3857–3863

    Article  CAS  Google Scholar 

  • Dessureault-Rompré J, Luster J, Schulin R, Tercier-Waeber ML, Nowack B (2010) Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Environ Pollut 158:1955–1962

    Article  PubMed  Google Scholar 

  • Epelde L, Becerril JM, Barrutia O, Gonza´lez-Oreja JA, Garbisu C (2010) Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ Pollut 158:1576–1583

    Article  PubMed  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Kollensperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

    Article  PubMed  CAS  Google Scholar 

  • Gonzaga MIS, Ma LQ, Santos JAG, Matias MIS (2009) Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Sci Total Environ 407:4711–4716

    Article  PubMed  CAS  Google Scholar 

  • Hammer D, Keller C (2002) Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J Environ Qual 31:1561–1569

    Article  PubMed  CAS  Google Scholar 

  • He L-Y, Chen Z-J, Ren G-D, Zhang Y-F, Qian M, Sheng X-F (2009) Increased cadmium and lead uptake of a cadmium hypraccumulator tomato by cadmium-resistant bacteria. Ecotox Environ Safe 72:1343–1348

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Kabata-Pendas A (2010) Trace elements in soil and plants, 4th edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Karimzadeh L, Heilmeier H, Merkel BJ (2012) Effect of microbial sideropore DFO-B on Cd accumulation by Thlaspi caerulescens hyperaccumulator in the presence of zeolite. Chemosphere 88:683–687

    Article  PubMed  CAS  Google Scholar 

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  • Kidd PS, Becerra-Castro C, Garcia-Lestón M, Monterroso C (2007) Aplicación de plantas hiperacumuladoras de niquel en la fitoextracción natural: et género Alyssum L. Ecosistemas 16:26–43

    Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Li TQ, Di ZH, Islam E, Jiang H, Yang X (2011a) Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. J Hazard Mater 185:818–823

    Article  PubMed  CAS  Google Scholar 

  • Li TQ, Di Z, Yang X, Sparks DL (2011b) Effect of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils. J Hazard Mater 192:1616–1622

    Article  PubMed  CAS  Google Scholar 

  • Liang W, Wu ZB, Cheng SP, Zhou QH, Hu HY (2003) Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system. Ecol Eng 21:191–195

    Article  Google Scholar 

  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  Google Scholar 

  • McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159

    Article  CAS  Google Scholar 

  • Morera MT, Echeverria JC, Mazkiaran C, Garrido JJ (2001) Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environ Pollut 113:135–144

    Article  PubMed  CAS  Google Scholar 

  • Nedelkoska TV, Doran PM (2001) Hyperaccumulation of Cadmium by Hairy Roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  Google Scholar 

  • Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata. Chemosphere 74:6–12

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallman K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextractiom of trace elements in contaminated soil. Soil Biol Biochem 60:182–194

    Article  PubMed  CAS  Google Scholar 

  • Stepniewska Z, Wolińska A, Ziomek J (2009) Response of soil catalase activity to chromium contamination. J Environ Sci 21:1142–1147

    Article  CAS  Google Scholar 

  • Su H, Cai Z, Zhou Q (2013) Phytoremediation of cadmium contaminated soils. Advances and researching prospects, Mater. Sci. Forum 743–744:732–744

    Google Scholar 

  • Sun RL, Zhou QX, Wei SH (2011) Cadmium accumulation in relation to organic acids and non-protein thiols in leaves of the new-found Cd-hyperaccumulator Rorippa globosa and the Cd-accumulating plant Rorippa islandica. J Plant Growth Regul 30:83–91

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EAH (2011) Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern rocky mountain front range. Am J Botany 98:1139–1147

    Article  Google Scholar 

  • Wei SH, Zhou QX, Wang X, Zhang KS, Guo GL, Ma LQ (2005) A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chin Sci Bullet 50:33–38

    Article  CAS  Google Scholar 

  • Wei SH, Zhou QX, Saha UK (2008) Hyperaccumulative characteristics of weed species to heavy metals. Water Air Soil Pollut 192:173–181

    Article  CAS  Google Scholar 

  • Wei SH, Li YM, Zhan J, Wang SS, Zhu JG (2012) Tolerant mechanisms of Rorippa globosa (Turcz.) Thell. hyperaccumulating Cd explored from root morphology. Biores Tech 118:455–459

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    Article  PubMed  CAS  Google Scholar 

  • Whiting SN, Leake JR, McGrath SP, Baker AJM (2001) Zinc accumulation by Thlaspi caerulescens from soils with different Zn availability: a pot study. Plant Soil 236:11–18

    Article  CAS  Google Scholar 

  • Xie HL, Jiang RF, Zhang FS, McGrath SP, Zhao FJ (2009) Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 318:205–215

    Article  CAS  Google Scholar 

  • Xiong JB, He ZL et al (2008) The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. Chemosphere 70:489–494

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang S, Xu X, Li T, Gong G, Jia Y (2010) Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. J Hazard Mater 180:303–308

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31270540, 31070455, 40971184 and 40930739), the National Science & Technology Pillar Program (2012BAC17B04), Hi-tech research and development program of China (2012AA06A202), and Natural Science Foundation of Liaoning Province, China (201102224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhe Wei.

Additional information

Responsible Editor: Tim Simon George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, S., Twardowska, I. Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell. Plant Soil 372, 669–681 (2013). https://doi.org/10.1007/s11104-013-1783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1783-0

Keywords

Navigation