Skip to main content

Advertisement

Log in

Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Iron (Fe) deficiency chlorosis associated with high levels of soil bicarbonate is one of the main nutritional disorders observed in sensitive grapevine genotypes. The aim of the experiment was to assess both the independent and combined effects of Fe and bicarbonate nutrition in grapevine.

Methods

Plants of the Fe chlorosis tolerant 140 Ruggeri rootstock were grown with and without Fe(III)-EDTA and bicarbonate in the nutrient solution. SPAD index, plant growth, root enzyme (PEPC, MDH, CS, NADP+ −IDH) activities, kinetic properties of root PEPC, organic acid concentrations in roots and xylem sap and xylem sap pH were determined. A factorial statistical design with two factors (Fe and BIC) and two levels of each factor was adopted: +Fe and −Fe, and +BIC and −BIC.

Results

This rootstock strongly reacted to Fe deficiency by activating several response mechanisms at different physiological levels. The presence of bicarbonate in the nutrient solution changed the activity of PEPC and TCA related enzymes (CS, NADP+-IDH) and the accumulation/translocation of organic acids in roots of Fe-deprived plants. Moreover, this genotype increased root biomass and root malic acid concentration in response to high bicarbonate levels in the substrate. Bicarbonate also enhanced leaf chlorophyll content.

Conclusions

Along with a clear independent effect on Fe nutrition, our data support a modulating role of bicarbonate on Fe deficiency response mechanisms at root level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CoA:

Coenzyme A

CS:

Citrate synthase

DW:

Dry weight

EDTA:

Ethylenediaminetetraacetic acid

FW:

Fresh weight

MDH:

Malate dehydrogenase

NADP+-IDH:

Isocitrate dehydrogenase

PEPC:

Phosphoenolpyruvate carboxylase

TCA:

Tricarboxylic acid

References

  • Andaluz S, López-Millán AF, Peleato ML, Abadía J, Abadía A (2002) Increases in phosphoenolpyruvate carboxylase activity in iron-deficient sugar beet roots: analysis of spatial localization and post-translational modification. Plant Soil 241:43–48

    Article  CAS  Google Scholar 

  • Andaluz S, Rodríguez-Celma J, Abadía A, Abadía J, López-Millán AF (2009) Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency. Plant Physiol Bioch 47:1082–1088

    Article  CAS  Google Scholar 

  • Abadía J, López Millán AF, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241:75–86

    Article  Google Scholar 

  • Bavaresco L, Civardi S, Pezzutto S, Vezzulli S, Ferrari F (2005) Grape production, technological parameters, and stilbenic compounds as affected by lime-induced chlorosis. Vitis 44(2):63–65

    CAS  Google Scholar 

  • Bavaresco L, Giachino E, Pezzutto S (2003) Grapevine rootstock effects on lime-induced chlorosis, nutrient uptake, and source-sink relationships. J Plant Nutr 26:1451–1465

    Article  CAS  Google Scholar 

  • Boxma R (1972) Bicarbonate as the most important soil factor in lime induced chlorosis in the Netherlands. Plant Soil 37:233–243

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brancadoro L, Rabotti G, Scienza A, Zocchi G (1995) Mechanisms of Fe-efficiency in roots of Vitis spp. in response to iron deficiency stress. Plant Soil 171:229–234

    Article  CAS  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Phys 47:273–298

    Article  CAS  Google Scholar 

  • De Nisi P, Zocchi G (2000) Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization. J Exp Bot 51(352):1903–1909

    Article  PubMed  CAS  Google Scholar 

  • DeBolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Ann Bot 99:3–8

    Article  PubMed  CAS  Google Scholar 

  • Donnini S, Castagna A, Ranieri A, Zocchi G (2009) Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. J Plant Physiol 166:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Donnini S, De Nisi P, Gabotti D, Tato L, Zocchi G (2012) Adaptive strategies of Parietaria diffusa (M.&K.) to calcareous habitat with limited iron availability. Plant Cell Environ 35:1171–1184

    Article  PubMed  CAS  Google Scholar 

  • Eason JR, Ryan D, Page B, Watson L, Coupe SA (2007) Harvested broccoli (Brassica oleracea) responds to high carbon dioxide and low oxygen atmosphere by inducing stress-response genes. Postharvest Biol Tec 43:358–365

    Article  CAS  Google Scholar 

  • Eynard I, Dalmasso G (1990) La scelta del portinnesto. In: Viticoltura moderna, manuale pratico. IX Ed. Milan, pp. 261-289

  • Goldberg DM, Ellis G (1974) Isocitrate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie/Academic Press, New York, pp 183–189

    Google Scholar 

  • Jelali N, Salah IB, M’sehli W, Donnini S, Zocchi G, Gharsalli M (2011) Comparison of three pea cultivars (Pisum sativum) regarding their responses to direct and bicarbonate-induced iron deficiency. Sci Hortic 129:548–553

    Article  CAS  Google Scholar 

  • Jelali N, Wissal M, Dell’orto M, Abdellya C, Gharsallia M, Zocchi G (2010) Changes of metabolic responses to direct and induced Fe deficiency of two Pisum sativum cultivars. Environ Exp Bot 68:238–246

    Article  CAS  Google Scholar 

  • Jiménez S, Gogorcena Y, Hévin C, Rombolà AD, Ollat N (2007) Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant Soil 290:343–355

    Article  Google Scholar 

  • Ksouri R, Gharsalli M, Lachaal M (2005) Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency. J Plant Physiol 162:335–341

    Article  PubMed  CAS  Google Scholar 

  • Ksouri R, M’rah S, Gharsalli M, Lachaâl M (2006) Biochemical responses to true and bicarbonate-induced iron deficiency in grapevine genotypes. J Plant Nutr 29:305–315

    Article  CAS  Google Scholar 

  • Levy PE, Meir P, Allen SJ, Jarvis PG (1999) The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiol 19:53–58

    Article  PubMed  Google Scholar 

  • López-Millán AF, Morales F, Andaluz S, Gogorcena Y, Abadía A, De Las Rivas J, Abadía J (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol 124:885–897

    Article  PubMed  Google Scholar 

  • López-Millán AF, Morales F, Gogorcena Y, Abadía A, Abadía J (2009) Metabolic responses in iron deficient tomato plants. J Plant Physiol 166:375–384

    Article  PubMed  Google Scholar 

  • Lucena C, Romera FJ, Rojas CL, García MJ, Alcántara E, Pérez-Vicente R (2007) Bicarbonate blocks the expression of several genes involved in the physiological responses to Fe deficiency of Strategy I plants. Funct Plant Biol 34:1002–1009

    Article  CAS  Google Scholar 

  • Mengel K, Breininger MT, Bübl W (1984) Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil. Plant Soil 81:333–344

    Article  CAS  Google Scholar 

  • Mengel K, Planker R, Hoffmann B (1994) Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). J Plant Nutr 17:1053–1065

    Article  CAS  Google Scholar 

  • M’sehli W, Dell’Orto M, De Nisi P, Donnini S, Abdelly C, Zocchi G, Gharsalli M (2009) Responses of two ecotypes of Medicago ciliaris to direct and bicarbonate-induced iron deficiency conditions. Acta Physiol Plant 31:667–673

    Article  Google Scholar 

  • Neumann G (2006) Root exudates and organic composition of plant roots. In: Luster J, Finlay R (eds) Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf, p 536

    Google Scholar 

  • Nikolic M, Römheld V (2007) The dynamics of iron in the leaf apoplast. Significance for the iron nutrition of plants. In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants: compartment of storage, transport and reactions. The significance of the apoplast for the mineral nutrition of higher plants. Springer, Netherlands, pp 353–371

    Chapter  Google Scholar 

  • Nikolic M, Römheld V, Merkt N (2000) Effect of bicarbonate on uptake and translocation of 59Fe in two grapevine rootstocks differing in their resistance to Fe deficiency chlorosis. Vitis 39(4):145–149

    CAS  Google Scholar 

  • Ollat N, Laborde B, Neveux M, Diakou-Verdin P, Renaud C, Moing A (2003) Organic acid metabolism in roots of various grapevine (Vitis) rootstocks submitted to iron deficiency and bicarbonate nutrition. J Plant Nutr 26(10&11):2165–2176

    Article  CAS  Google Scholar 

  • Rombolà AD (1998) Aspetti fisiologici e biochimici della nutrizione ferrica in actinidia (A. deliciosa). PhD thesis. Dipartimento di Colture Arboree, Università degli Studi di Bologna, Bologna

    Google Scholar 

  • Rombolà AD, Brüggemann W, López-Millán AF, Tagliavini M, Abadía J, Marangoni B, Moog PR (2002) Biochemical responses to iron deficiency in kiwifruit (Actinidia deliciosa). Tree Physiol 22:869–875

    Article  PubMed  Google Scholar 

  • Rombolà AD, Gogorcena Y, Larbi A, Morales F, Baldi E, Marangoni B, Tagliavini M, Abadía J (2005) Iron deficiency-induced changes in carbon fixation and leaf elemental composition of sugar beet (Beta vulgaris) plants. Plant Soil 271:39–45

    Article  Google Scholar 

  • Rombolà AD, Tagliavini M (2006) Iron nutrition of fruit tree crops. In: Abadía J, Barton L (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Berlin, pp 61–83

    Chapter  Google Scholar 

  • Ruffner HP (1982) Metabolism of tartaric and malic acids in Vitis: a review. Vitis 2:247–259

    Google Scholar 

  • Smith F (1974) Malate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie/Academic Press, New York, pp 163–175

    Google Scholar 

  • Srere PA (1967) Citrate synthase. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic, New York, pp 3–11

    Google Scholar 

  • Stringer JW, Kimmerer TW (1993) Refixation of xylem sap CO2 in Populus deltoides. Physiol Plant 89:243–251

    Article  CAS  Google Scholar 

  • Tagliavini M, Bassi D, Marangoni B (1993) Growth and mineral nutrition of pear rootstocks in lime soils. Sci Hortic 54:13–22

    Article  Google Scholar 

  • Tagliavini M, Rombolà AD (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur J Agron 15:71–92

    Article  CAS  Google Scholar 

  • Vance CP, Stade S, Maxwell CA (1983) Alfalfa root nodule carbon dioxide fixation. I: association with nitrogen fixation and incorporation into amino acids. Plant Physiol 72:469–473

    Article  PubMed  CAS  Google Scholar 

  • Vigani G, Maffi D, Zocchi G (2009) Iron availability affects the function of mitochondria in cucumber roots. New Phytol 182:127–136

    Article  PubMed  CAS  Google Scholar 

  • Wegner LH, Zimmermann U (2004) Bicarbonate-induced alkalinization of the xylem sap in intact maize seedlings as measured in situ with a novel xylem ph probe. Plant Physiol 136:3469–3477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of Chile and the Erasmus Mundus External Cooperation Window for Chile (Lot 17)-European Union Community for the Doctoral scholarships to Dr. José Ignacio Covarrubias. The authors thank Dr. Javier Abadía for reading the manuscript and providing helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adamo Domenico Rombolà.

Additional information

Responsible Editor: Michael A. Grusak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Covarrubias, J.I., Rombolà, A.D. Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate. Plant Soil 370, 305–315 (2013). https://doi.org/10.1007/s11104-013-1623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1623-2

Keywords

Navigation