Skip to main content

Advertisement

Log in

Does phosphorus limitation promote species-rich plant communities?

  • Commentary
  • Published:
Plant and Soil Aims and scope Submit manuscript

The Original Article was published on 04 December 2010

Abstract

It is known that the number of limiting nutrients may affect the species richness of plant communities, but it is unclear whether the type of nutrient limitation is also important. I place the results from a study in Patagonia (elsewhere in this issue) in the context of the number and types of nutrients that are limiting. I present four mechanisms through which N or P limitation may potentially influence species richness. These mechanisms are related to: (i) the number of forms in which P or N are present in soil and the plant traits needed to acquire them, (ii) the mechanisms and traits that control species competition and coexistence under N or P limitation, (iii) the regional species pools of plants capable of growing under N- and P-limited conditions, and (iv) the interaction between the type of nutrient limitation and community productivity. It appears likely that P limitation can favour a higher species richness than N limitation, in at least in a variety of low productive plant communities, but evidence to support this conclusion is so far lacking. The four mechanisms proposed here offer a framework for exploring whether the type of nutrient limitation per se, or an interaction with productivity, is a potential driver for variation in species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R, de Caluwe H, Beltman B (2003) Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation? Oikos 101:489–498

    Article  Google Scholar 

  • Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia grasslands. Glob Change Biol 16:358–372

    Article  Google Scholar 

  • Beltman B, Willems JH, Gusewell S (2007) Flood events overrule fertiliser effects on biomass production and species richness in riverine grasslands. J Veg Sci 18:625–634

    Article  Google Scholar 

  • Blanck YL, Gowda J, Martensson LM, Sandberg J, Fransson AM (2011) Plant species richness in a natural Argentinean matorral shrub-land correlates negatively with levels of plant phosphorus. Plant Soil. doi:10.1007/s11104-010-0671-0

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  PubMed  CAS  Google Scholar 

  • Braakhekke WG, Hooftman D (1999) The resource balance hypothesis of plant species diversity in grassland. J Veg Sci 10:187–200

    Article  Google Scholar 

  • Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R (2009) Separating the influence of resource ‘availability’ from resource 'imbalance' on productivity-diversity relationships. Ecol Lett 12:475–487

    Article  PubMed  Google Scholar 

  • Cech PG, Kuster T, Edwards PJ, Olde Venterink H (2008) Effects of herbivory, fire and N2-fixation on nutrient limitation in a humid African savanna. Ecosystems 11:991–1004

    Article  CAS  Google Scholar 

  • Chytry M, Hejcman M, Hennekens SM, Schellberg J (2009) Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany. Appl Veg Sci 12:167–176

    Article  Google Scholar 

  • Clark CM, Cleland EE, Collins SL, Fargione JE, Gough L, Gross KL, Pennings SC, Suding KN, Grace JB (2007) Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol Lett 10:596–607

    Article  PubMed  Google Scholar 

  • Craine JM, Fargione J, Sugita S (2005) Supply pre-emption, not concentration reduction, is the mechanism of competition for nutrients. New Phytol 166:933–940

    Article  PubMed  Google Scholar 

  • Daufresne T, Hedin LO (2005) Plant coexistence depends on ecosystem nutrient cycles: extension of the resource-ratio theory. Proc Natl Acad Sci USA 102:9212–9217

    Article  PubMed  CAS  Google Scholar 

  • Dickson TL, Foster BL (2011) Fertilization decreases plant biodiversity even when light is not limiting. Ecol Lett 14:380–388

    Article  PubMed  Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943

    Article  Google Scholar 

  • Goldberg DE, Miller TE (1990) Effects of different resource additions on species diversity in an annual plant community. Ecology 71:213–225

    Article  Google Scholar 

  • Gough L, Grace JB, Taylor KL (1994) The relationships between species richness and community biomass: the importance of environmental variables. Oikos 70:271–279

    Article  Google Scholar 

  • Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439

    Article  Google Scholar 

  • Grace JB (1999) The factors controlling species density in herbaceous plant communities: an assessment. Perspect Plant Ecol 2:1–28

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley and sons, Chichester

    Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Güsewell S (2005a) High nitrogen: phosphorus ratios reduce nutrient retention and second year growth of wetland sedges. New Phytol 166:537–550

    Article  PubMed  Google Scholar 

  • Güsewell S (2005b) Responses of wetland graminoids to the relative supplies of nitrogen and phosphorus. Plant Ecol 176:35–55

    Article  Google Scholar 

  • Güsewell S, Koerselman W (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol 5:37–61

    Article  Google Scholar 

  • Güsewell S, Bollens U, Ryser P, Klötzli F (2003) Contrasting effects of nitrogen, phosphorus and water regime on first-year and second-year growth of 16 wetland species. Funct Ecol 17:754–765

    Article  Google Scholar 

  • Güsewell S, Bailey KM, Roem WJ, Bedford BL (2005) Nutrient limitation and botanical diversity in wetlands: can fertilisation raise species richness? Oikos 109:71–80

    Article  Google Scholar 

  • Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 446:791–793

    Article  PubMed  CAS  Google Scholar 

  • Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646–657

    Article  CAS  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638

    Article  PubMed  CAS  Google Scholar 

  • Honsova D, Hejcman M, Klaudisova M, Pavlu V, Kocourkova D, Hakl J (2007) Species composition of an alluvial meadow after 40 years of applying nitrogen, phosphorus and potassium fertilizer. Preslia 79:245–258

    Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86

    Article  CAS  Google Scholar 

  • Huston M (1980) Soil nutrients and tree species richness in Costa-Rican forests. J Biogeogr 7:147–157

    Article  Google Scholar 

  • Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401

    Article  Google Scholar 

  • Huston MA, DeAngelis DL (1994) Competition and coexistance: the effects of resource transport and supply rates. Am Nat 144:954–977

    Article  Google Scholar 

  • Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillat F, Oomes MJM (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202:69–78

    Article  CAS  Google Scholar 

  • Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: An explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–1255

    Article  PubMed  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    Article  CAS  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    Article  PubMed  CAS  Google Scholar 

  • Moore DRJ, Keddy PA (1989) The relationship between species richness and standing crop in wetlands: the importance of scale. Vegetatio 79:99–106

    Article  Google Scholar 

  • Myers N, Mittermeier RA, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Olde Venterink H (2000) Nitrogen, phosphorus and potassium flows controlling plant productivity and species richness. PhD Thesis Utrecht University, Utrecht

  • Olde Venterink H, Güsewell S (2010) Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Funct Ecol 24:877–886

    Article  Google Scholar 

  • Olde Venterink H, Van der Vliet RE, Wassen MJ (2001a) Nutrient limitation along a productivity gradient in wet meadows. Plant Soil 234:171–179

    Article  CAS  Google Scholar 

  • Olde Venterink H, Wassen MJ, Belgers JDM, Verhoeven JTA (2001b) Control of environmental variables on species density in fens and meadows; importance of direct effects and effects through community biomass. J Ecol 89:1033–1040

    Article  CAS  Google Scholar 

  • Olde Venterink H, Davidsson TE, Kiehl K, Leonardson L (2002) Impact of drying and re-wetting on N, P and K dynamics in a wetland soil. Plant Soil 243:119–130

    Article  Google Scholar 

  • Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC (2003) Species richness-productivity patterns differ between N-, P- and K-limited wetlands. Ecology 84:2191–2199

    Article  Google Scholar 

  • Olde Venterink H, Vermaat JE, Pronk M, Wiegman F, van der Lee GEM, van den Hoorn MW, Higler LWG, Verhoeven JTA (2006) Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Appl Veg Sci 9:163–174

    Article  Google Scholar 

  • Olde Venterink H, Kardel I, Kotowski W, Peeters W, Wassen MJ (2009) Long-term effects of drainage and hay-removal on nutrient dynamics and limitation in the Biebrza mires, Poland. Biogeochemistry 93:235–252

    Article  Google Scholar 

  • Pärtel M, Zobel M, Zobel K, Van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75:111–117

    Article  Google Scholar 

  • Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–476

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Roem WJ, Berendse F (2000) Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92:151–161

    Article  Google Scholar 

  • Roem WJ, Klees H, Berendse F (2002) Effects of nutrient addition and acidification on plant species diversity and seed germination in heathland. J Appl Ecol 39:937–948

    Article  CAS  Google Scholar 

  • Smolders AJP, Lucassen E, van der Aalst M, Lamers LPM, Roelofs JGM (2008) Decreasing the abundance of Juncus effusus on former agricultural lands with noncalcareous sandy soils: Possible effects of liming and soil removal. Rest Ecol 16:240–248

    Article  Google Scholar 

  • Stevens CJ, Dupre C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392

    Article  PubMed  CAS  Google Scholar 

  • Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton

    Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Article  Google Scholar 

  • Turner BL (2008) Resource partitioning for soil phosphorus: a hypothesis. J Ecol 96:698–702

    Article  CAS  Google Scholar 

  • Van Dijk J, Stroetenga M, Van Bodegom PM, Aerts R (2007) The contribution of rewetting to vegetation restoration of degraded peat meadows. Appl Veg Sci 10:315–314

    Article  Google Scholar 

  • Vasander H (1982) Plant biomass and production in virgin, drained and fertilized sites in a raised bog in southern Finland. Ann Bot Fen 19:103–125

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Wassen MJ, Olde Venterink H, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  PubMed  CAS  Google Scholar 

  • Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635

    Article  PubMed  Google Scholar 

  • Wheeler BD, Shaw SC (1991) Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales. J Ecol 79:285–301

    Article  Google Scholar 

  • Zak D, Gelbrecht J (2007) The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85:141–151

    Article  CAS  Google Scholar 

  • Zobel M (1992) Plant species coexistence—the role of historical, evolutionary and ecological factors. Oikos 65:314–320

    Article  Google Scholar 

Download references

Acknowledgements

I thank Luciola Lannes, Etienne Laliberté, Hans Göransson, Hans Lambers, Peter Edwards, and three reviewers for their discussions and suggestions to improve the manuscript, Kristel Perreijn for drawing Fig. 3, and Luciola Lannes and Etienne Laliberté for allowing to use their photographs (Fig. 1a, b). This paper was written in the context of project 31003A_122563 funded by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Olde Venterink.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olde Venterink, H. Does phosphorus limitation promote species-rich plant communities?. Plant Soil 345, 1–9 (2011). https://doi.org/10.1007/s11104-011-0796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0796-9

Keywords

Navigation