Skip to main content

Advertisement

Log in

Landscape age and soil fertility, climatic stability, and fire regime predictability: beyond the OCBIL framework

  • Commentary
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Hopper (Plant Soil 322:49–86, 2009) introduced landscape age, climate buffering, and soil nutrient status as descriptors for a continuum between old, climatically buffered landscapes characterised by low soil fertility (OCBIL) and young, often disturbed landscapes characterised by fertile soils (YODFEL). Hopper (Plant Soil 322:49–86, 2009) provided an important framework for biodiversity and conservation. We argue that Hopper’s (Plant Soil 322:49–86, 2009) conceptual framework includes five areas worthy of further consideration. These include: (1) The appropriateness of the original three dimensions; (2) The need for deeper consideration of rejuvenation and disturbance within OCBILs. (3) Broadening the globally relevant range of environments. (4) Operationalising the definitions or dimensions. (5) Revisiting the scale and compatibility of the predictions. Here, we address the first four of these areas and offer an alternative conceptual framework based on the idea of Old Stable Landscapes (OSLs). We redefine Hopper’s climate buffering as a dimension of climate stability, identify soil-impoverishment as a function of landscape age, and recognise fire regime predictability as a large-scale, long-term evolutionarily important dimension. In so doing, we construct a globally-relevant, qualitative template to enable the testing of evolutionary-ecological hypotheses concerning biodiversity (e.g. species diversity, diversity gradients, endemism, speciation and extinction rates, cladogenesis, persistence of old lineages, refugial phenomena). Our template is characterised by having operationally defined dimensions, which can be used to design surveys and experiments to address the issues of biodiversity conservation, recovery, and restoration under variations in landscape age, climatic stability and fire regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerly DD (2006) Plant evolution at the crossroads: the imprint of history, climate, and humans on the Mediterranean flora. Am J Bot 93:170–174

    Google Scholar 

  • Ackerly DD (2009) Evolution, origin and age of lineages in the Californian and Mediterranean floras. J Biogeogr 36:1221–1233

    Google Scholar 

  • Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50:29–37

    CAS  Google Scholar 

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Google Scholar 

  • Anhuf D, Ledru M-P, Behling H, Da Cruz Jr FW, Cordeiro RC, Van der Hammen T, Karmann I, Marengo JA, De Oliveira PE, Pessenda L, Siffedine A, Albuquerque AL, Da Silva Dias PL (2006) Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr Palaeoclimatol Palaeoecol 239:510–527

    Google Scholar 

  • Archibald S, Roy DP, van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Chang Biol 15:613–630

    Google Scholar 

  • Axelrod DI (1973) History of the mediterranean ecosystem in California. In: di Castri F, Mooney HA (eds) Mediterranean type ecosystems. Springer, Berlin, pp 225–305

    Google Scholar 

  • Axelrod DI (1975) Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann Mo Bot Gard 62:280–334

    Google Scholar 

  • Barraclough TG (2006) What can phylogenetics tell us about speciation in the Cape flora? Divers Distrib 12:21–26

    Google Scholar 

  • Barraclough TG, Reeves G (2005) The causes of speciation in flowering plant lineages: species-level DNA trees in the African genus Protea. In: Bakker FT, Chatrou LW, Gravendeel B, Pelser PB (eds) Plant species-level systematics: a new perspective on pattern and process. Koeltz, Königstein, pp 31–46

    Google Scholar 

  • Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chang Biol 12:2023–2031

    Google Scholar 

  • Bishop P (ed) (2004) Critical concepts in geomorphology. Volume 7. Landscape evolution. Routledge, London

  • Bishop P (2007) Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Process Landf 32:329–365

    Google Scholar 

  • Blumler MA (2005) Three conflated definitions of Mediterranean climates. Middle States Geogr 38:52–60

    Google Scholar 

  • Bobe R (2006) The evolution of arid ecosystems in eastern Africa. J Arid Environ 66:564–584

    Google Scholar 

  • Bonan G (2002) Ecological climatology: concepts and applications. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Bond WJ (2005) Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J Veg Sci 16:261–266

    Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    PubMed  Google Scholar 

  • Bond WJ, Scott AC (2010) Fire and the spread of flowering plants in the Cretaceous. New Phytol 188:1137–1150

    PubMed  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary developmental perspective. Trends Ecol Evol 13:492–498

    CAS  Google Scholar 

  • Bowman DMJS (1998) The impact of Aboriginal landscape burning on the Australian biota. New Phytol 140:385–410

    Google Scholar 

  • Bowman DMJS (2000) Australian rainforests. Islands of green in a land of fire. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Bowman D (2005) Understanding a flammable planet—climate, fire and global vegetation patterns. New Phytol 165:341–345

    PubMed  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth system. Science 324:481–484

    CAS  PubMed  Google Scholar 

  • Bradshaw SD, Dixon KW, Hopper SD, Lambers H, Turner SR (2010) Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends Plant Sci. doi:10.1016/j.tplants.2010.10.007

    PubMed  Google Scholar 

  • Bradstock RA (2010) A biogeographic model of fire regimes in Australia: current and future implications. Glob Ecol Biogeogr 19:145–158

    Google Scholar 

  • Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    CAS  Google Scholar 

  • Burrows N, Wardell-Johnson G (2003) Interactions of fire and plants in south-western Australia’s forested ecosystems: A review. In: Burrows N, Abbott I (eds) Fire in south-western Australian ecosystems: impacts and management. Backhuys, Leiden, pp 225–268

    Google Scholar 

  • Bytebier B, Antonelli A, Bellstedt DU, Linder HP (2010) Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc R Soc Lond B Biol Sci. doi:10.1098/rspb.2010.1035

    Google Scholar 

  • Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475

    CAS  PubMed  Google Scholar 

  • Cane MA, Molnar P (2001) Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411:157–162

    CAS  PubMed  Google Scholar 

  • Carnival AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    Google Scholar 

  • Cary GJ (2002) Importance of a changing climate for fire regimes in Australia. In: Bradstock RA, Williams DS, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge Univ Press, Cambridge, pp 126–146

    Google Scholar 

  • Catchpole W (2002) Fire properties and burn patterns in heterogenous landscapes. In: Bradstock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge Univ Press, Cambridge, pp 50–75

    Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497

    CAS  Google Scholar 

  • Chaloner WG (1989) Fossil charcoal as an indicator of palaeoatmospheric oxygen level. J Geol Soc 146:171–174

    Google Scholar 

  • Chase BM, Meadows ME (2007) Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci Rev 84:103–138

    Google Scholar 

  • Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ (2004) Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol 2(11):e406

    PubMed  Google Scholar 

  • Chuvieco E, Giglio L, Justice C (2008) Global characterization of fire activity: toward defining fire regimes from Earth observation data. Glob Chang Biol 14:1488–1502

    Google Scholar 

  • Clements FE (1936) Nature and structure of the climax. J Ecol 24:252–284

    Google Scholar 

  • Colinveaux PA, De Oliveira PE, Moreno JE, Miller MC, Bush MB (1996) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:85–88

    Google Scholar 

  • Cowles HC (1899) The ecological relations of the vegetation on the sand dunes of Lake Michigan: part 1—Geographical relations of the dune floras. Bot Gaz 27:95–391

    Google Scholar 

  • Cowling RM (1987) Fire and its role in coexistence and speciation in Gondwanan shrublands. S Afr J Sci 83:106–111

    Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in mediterranean-climate regions. Trends Ecol Evol 11:362–366

    CAS  PubMed  Google Scholar 

  • Cowling RM, Ojeda F, Lamont BB, Rundel PW (2004) Climate stability in mediterranean-type ecosystems: implications for the evolution and conservation of biodiversity. In: Arianoutsou M, Papanastasis VP (eds) Ecology, conservation and management of Mediterranean climate ecosystems. Proceedings of the 10th MEDECOS Conference. Millpress, Rotterdam, pp 1–11

    Google Scholar 

  • Cowling RM, Ojeda F, Lamont BB, Rundel PW, Lechmere-Oertel R (2005) Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire-prone mediterranean-climate ecosystems. Glob Ecol Biogeogr 14:509–519

    Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424

    Google Scholar 

  • Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65

    PubMed  Google Scholar 

  • Deacon HJ (1983) The comparative evolution of Mediterranean-type ecosystems, a southern perspective. In: Kruger FJ, Mitchell DT, Jarvis JUM (eds) Mediterranean type ecosystems: the role of nutrients. Springer, Berlin, pp 3–40

    Google Scholar 

  • deMenocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59

    CAS  PubMed  Google Scholar 

  • deMenocal PB (2004) African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet Sci Lett 220:3–24

    CAS  Google Scholar 

  • Dodson JR, Ramrath A (2001) An Upper Pliocene environmental record from south-western Australia—preliminary results. Palaeogeogr Palaeoclimatol Palaeoecol 167:309–320

    Google Scholar 

  • Ellison AM, Gotelli NJ (2009) Energetics and the evolution of carnivorous plants—Darwin’s ‘most wonderful plants in the world’. J Exp Bot 60:19–42

    CAS  PubMed  Google Scholar 

  • Escudero A, del Arco JM, Sanz IC, Ayala J (1992) Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:80–87

    Google Scholar 

  • Faivre N, Roche P, Boer MM, McCaw L, Grierson PF (2011) Characterization of landscape pyrodiversity in Mediterranean ecosystems—contrasts and similarities between south-western Australia and south-eastern France. Landsc Ecol. doi:10.1007/s10980-011-9582-6

  • Fjeldså J, Lovett JC (1997) Biodiversity and environmental stability. Biodivers Conserv 6:315–323

    Google Scholar 

  • Fjeldså J, Ehrlich D, Lambin E, Prins E (1997) Are biodiversity ‘hotspots’ correlated with current ecoclimatic stability? A pilot study using the NOAA-AVHRR remotes enting data. Biodivers Conserv 6:399–420

    Google Scholar 

  • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogegr Palaeoclimatol Palaeoecol 108:537–555

    Google Scholar 

  • Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large infrequent forest disturbances. Ecosystems 1:497–510

    Google Scholar 

  • Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. Am Nat 161:523–536

    PubMed  Google Scholar 

  • Gale SJ (1992) Long-term landscape evolution in Australia. Earth Surf Process Landf 17:323–343

    Google Scholar 

  • Gill AM (1975) Fire and the Australia flora—a review. Aust For 38:4–25

    Google Scholar 

  • Gill AM (1981) Adaptive responses of Australian vascular plant species to fire. In: Gill AM, Groves RH, Noble IR (eds) Fire and the Australia biota. Australian Academy of Sciences, Canberra, pp 243–272

    Google Scholar 

  • Glasspool IJ, Edwards D, Axe L (2004) Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32:381–383

    Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (eds) (2004) A geologic time scale 2004. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Graham CH, Moritz C, Williams SE (2006) Habitat history improves prediction of biodiversity in rainforest fauna. Proc Natl Acad Sci USA 103:632–636

    CAS  PubMed  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Google Scholar 

  • Grimm V, Wissel C (1997) Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 109:323–334

    Google Scholar 

  • Grimm V, Schmidt E, Wissel C (1992) On the application of stability concepts in ecology. Ecol Model 63:143–161

    Google Scholar 

  • Groom PK, Lamont BB (2010) Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant Soil 334:61–72

    CAS  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Google Scholar 

  • Hälbich IW, Fitch FJ, Miller JA (1983) Dating the Cape orogeny. Spec Publ Geol Soc S Afr 12:149–164

    Google Scholar 

  • Hansson SO, Helgesson G (2003) What is stability? Synthese 136:219–235

    Google Scholar 

  • Harris TM (1958) Forest fire in the Mesozoic. J Ecol 46:447–453

    Google Scholar 

  • Harrison TM, Copeland P, Kidd WS (1992) Raising Tibet. Science 255:1663–1670

    CAS  PubMed  Google Scholar 

  • Hartley AJ (2003) Andean uplift and climate change. J Geol Soc Lond 160:7–10

    Google Scholar 

  • Haug GH, Tiedemann R, Zahn R, Ravelo AC (2001) Role of Panama uplift on oceanic freshwater balance. Geology 29:207–210

    CAS  Google Scholar 

  • Hay WW, Soeding E, DeConto RM, Wold CN (2002) The Late Cenozoic uplift—climate change paradox. Int J Earth Sci Geol Rundsch 91:746–774

    CAS  Google Scholar 

  • Heads M (2009) Globally basal centres of endemism: the Tasman-Coral Sea region (south-west Pacific), Latin America and Madagascar/South Africa. Biol J Linn Soc 96:222–245

    Google Scholar 

  • Heimsath AM, Chappell J, Fifield K (2010) Eroding Australia: rates and processes from Bega Valley to Arnhem Land. Geol Soc Lond Spec Publ 346:225–241

    Google Scholar 

  • Hély C, Bremond L, Alleaume S, Smith S, Sykes MT, Guiot J (2006) Sensitivity of African biomes to changes in the precipitation regime. Glob Ecol Biogeogr 15:258–270

    Google Scholar 

  • Herrera CM (1992) Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants. Am Nat 140:421–446

    Google Scholar 

  • Hopper SD (2003) An evolutionary perspective on south-west Western Australian landscapes, biodiversity and fire: a review and management implications. In: Burrows N, Abbott I (eds) Fire in south-western Australian ecosystems: impacts and management. Backhuys, Leiden, pp 9–35

    Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86

    CAS  Google Scholar 

  • Hsu J (1978) On the paleobotanical evidence for continental drift and Himalayan uplift. Paleobotany 25:131–142

    Google Scholar 

  • Hutchinson MF, McIntyre S, Hobbs RJ, Stein JL, Garnett S, Kinloch J (2005) Integrating a global agro-climatic classification with bioregional boundaries in Australia. Glob Ecol Biogeogr 14:197–212

    Google Scholar 

  • Isacks BL (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J Geophys Res 93:3211–3231

    Google Scholar 

  • Jackson WD (1968) Fire, air, water and earth—an elemental ecology of Tasmania. Proc Ecol Soc Aust 3:9–16

    Google Scholar 

  • Jarrett PH, Petrie AHK (1929) The vegetation of the Blacks’ Spur region: a study in the ecology of some Australian mountain Eucalyptus forests II. Pyric succession. J Ecol 17:249–281

    Google Scholar 

  • Jutson JT (1914) Physiographical geology (physiography) of Western Australia. Geol Surv West Aust Bull 61

  • Karas C, Nürnberg D, Gupta AK, Tiedemann R, Mohan K, Bickert T (2009) Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nat Geosci 2:434–438

    CAS  Google Scholar 

  • Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG (2006) Carbon storage on landscapes with stand-replacing fires. Bioscience 56:598–606

    Google Scholar 

  • Keeley JE, Rundel PW (2005) Fire and the Miocene expansion of C4 grasslands. Ecol Lett 8:683–690

    Google Scholar 

  • Kellman M (1984) Synergistic relationships between fire and low soil fertility in neotropical savannas: a hypothesis. Biotropica 16:158–160

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien M, Van Dorn J, Hayhoe K (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4(4):e5102

    PubMed  Google Scholar 

  • Krebs-Kanzow U, Park W, Schneider B (2010) The tectonic closing of the Indonesian Passages and Mid Pliocene climate change. Geophys Res Abstr 12:EGU2010-9097

    Google Scholar 

  • Kreft H, Jetz W, Mutke J, Barthlott W (2010) Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33:408–419

    Google Scholar 

  • Kuo J, Hocking PJ, Pate JS (1982) Nutrient reserves in seeds of selected proteaceous species from south-western Australia. Aust J Bot 30:231–249

    CAS  Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    CAS  PubMed  Google Scholar 

  • Lambeck K, Stephenson R (1986) The post-Palaeozoic uplift history of south-eastern Australia. Aust J Earth Sci 33:253–270

    Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    PubMed  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    CAS  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    CAS  Google Scholar 

  • Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot Rev 48:597–689

    CAS  Google Scholar 

  • Lamont BB (1984) Specialised modes of nutrition. In: Pate JS, Beard JS (eds) Kwongan. Plant life on the sandplain. Univ West Aust Press, Perth, pp 126–145

    Google Scholar 

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclimatol Palaeoecol 198:11–37

    Google Scholar 

  • Linacre E, Hobbs J (1977) The Australian climatic environment. J Wiley, Brisbane

    Google Scholar 

  • Linder HP (2003) The radiation of the Cape flora, southern Africa. Biol Rev 78:597–638

    CAS  PubMed  Google Scholar 

  • Linder HP (2008) Plant species radiations: where, when, why? Proc R Soc Lond B Biol Sci 363:3097–3105

    Google Scholar 

  • Linder HP, Hardy CR (2004) Evolution of the species-rich Cape flora. Philos Trans R Soc Lond B 359:1623–1632

    CAS  Google Scholar 

  • Liu L, Eronen JT, Fortelius M (2009) Significant mid-latitude aridity in the middle Miocene of East Asia. Palaeogeogr Palaeoclimatol Palaeoecol 279:201–206

    Google Scholar 

  • Lynch AH, Beringer J, Kershaw P, Marshall A, Mooney S, Tapper N, Turney C, Van Der Kaars S (2007) Using the Paleorecord to evaluate climate and fire interactions in Australia. Annu Rev Earth Planet Sci 35:215–239

    CAS  Google Scholar 

  • Mackey B, Lindenmayer D, Gill M, McCarthy M, Lindesay J (2002) Wildlife, fire and future climate: a forest ecosystem analysis. CSIRO, Collingwood

    Google Scholar 

  • McIntosh PD, Laffan MD, Hewitt AE (2005) The role of fire and nutrient loss in the genesis of the forest soils of Tasmania and southern New Zealand. For Ecol Manage 220:185–215

    Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345

    Google Scholar 

  • Merckx V, Bidartondo MI, Hynson NA (2009) Myco-heterotrophy: when fungi host plants. Ann Bot 104:1255–1261

    PubMed  Google Scholar 

  • Meyers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Google Scholar 

  • Midgley GF, Hannah L, Roberts R, MacDonald DJ, Allsopp J (2001) Have Pleistocene climatic cycles influenced species richness patterns in the greater Cape Mediterranean Region? J Mediterr Ecol 2:137–144

    Google Scholar 

  • Midgley JJ, Lawes MJ, Chamaille-Jammes S (2010) Savanna woody plant dynamics: the role of fire and herbivory, separately and synergistically. Aust J Bot 58:1–11

    Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563

    Google Scholar 

  • Mutch RW (1970) Wildland fires and ecosystems—a hypothesis. Ecology 51:1046–1051

    Google Scholar 

  • Ojeda F, Brun FG, Vergara JJ (2005) Fire, rain and the selection of seeder and resprouter life-histories in fire-recruiting, woody plants. New Phytol 168:155–165

    PubMed  Google Scholar 

  • Ojeda F, Pausas JG, Verdú M (2010) Soil shapes community structure through fire. Oecologia 163:729–735

    PubMed  Google Scholar 

  • Ollier CD, Gaunt GFM, Jurkowski I (1988) The Kimberley Plateau, Western Australia: a Precambrian erosion surface. Z Geomorph NF 32:239–246

    Google Scholar 

  • Orians GH, Milewski AV (2007) Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev 82:393–423

    PubMed  Google Scholar 

  • Pagani M, Freeman KH, Arthur MA (1999) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876–879

    CAS  PubMed  Google Scholar 

  • Partridge TC (1997) Evolution of landscapes. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of Southern Africa. Cambridge Univ Press, Cambridge, pp 5–20

    Google Scholar 

  • Partridge TC, Maud RR (1987) Geomorphic evolution of southern Africa since the Mesozoic. S Afr J Geol 902:179–208

    Google Scholar 

  • Partridge TC, Scott L, Schneider RR (2004) Between Agulhas and Benguela: responses of southern African climates of the late Pleistocene to current fluxes, orbital precession and the extent of the circum-antarctic vortex. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Springer, Dordrecht, pp 45–68

    Google Scholar 

  • Pate JS, Verboom WH (2009) Contemporary biogenic formation of clay pavements by eucalypts: further support for the phytotarium concept. Ann Bot 103:673–685

    PubMed  Google Scholar 

  • Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 49:529–560

    CAS  Google Scholar 

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601

    Google Scholar 

  • Pillans B (2007) Pre-Quaternary landscape inheritance in Australia. J Quat Sci 22:439–447

    Google Scholar 

  • Pinot S, Ramstein G, Harrison SP, Prentice IC, Guiot J, Stute M, Joussaume S (1999) Tropical paleoclimates at the last glacial maximum: comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Clim Dyn 15:857–874

    Google Scholar 

  • Plana V (2004) Mechanisms and tempo of evolution in the African Guineo–Congolian rainforest. Phil Trans R Soc Lond B 359:1585–1594

    Google Scholar 

  • Porder S, Vitousek PM, Chadwick OA, Chamberlain PC, Hilley GE (2007) Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:158–170

    CAS  Google Scholar 

  • Potter PE, Szatmari P (2009) Global Miocene tectonics and the modern world. Earth Sci Rev 96:279–295

    Google Scholar 

  • Quigley MC, Sandiford M, Cupper ML (2007) Distinguishing tectonic from climatic controls on range-front sedimentation. Basin Res 19:491–505

    Google Scholar 

  • Quint M, Classen-Bockhoff R (2006) Phylogeny of Bruniaceae based on matK and its sequence data. Int J Plant Sci 167:135–146

    CAS  Google Scholar 

  • Rebelo AG, Boucher C, Helme N, Mucina L, Rutherford MC, Smit WJ, Powrie LW, Ellis F, Lambrechts JJ, Scott L, Radloff FGT, Johnson SD, Richardson DM, Ward RA, Procheş ŞM, Oliver EGH, Manning JC, Jürgens N, McDonald DJ, Janssen JAM, Walton BA, le Roux A, Skowno AL, Todd SW, Hoare DB (2006) Fynbos Biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 52–219

    Google Scholar 

  • Richardson JE, Weitz FM, Fay MF, Cronk QCB, Linder HP, Reeves G, Chase MW (2001) Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412:181–183

    CAS  PubMed  Google Scholar 

  • Roering JJ, Gerber M (2005) Fire and the evolution of steep, soil-mantled landscapes. Geology 33:349–352

    Google Scholar 

  • Ruddiman WF (ed) (1997) Tectonic uplift and climate change. Plenum, New York

    Google Scholar 

  • Rutherford MC, Mucina L, Powrie LW (2006) Biomes and bioregions of Southern Africa. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 30–51

    Google Scholar 

  • Salazar LF, Nobre CA (2010) Climate change and thresholds of biome shifts in Amazonia. Geophys Res Lett 37: doi:10.1029/2010GL043538

  • Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ, Mast AR, Savolainen V (2009a) Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc Natl Acad Sci USA 106:221–225

    CAS  PubMed  Google Scholar 

  • Sauquet H, Weston PH, Barker NP, Anderson CL, Cantrill DJ, Savolainen V (2009b) Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae). Mol Phylogenet Evol 51:31–43

    CAS  PubMed  Google Scholar 

  • Schimper AFW (1903) Plant geography on a physiological basis. Clarendon, Oxford

    Google Scholar 

  • Scott AC (2000) The Pre-Quaternary history of fire. Palaeogeogr Palaeoclimatol Palaeoecol 164:281–329

    Google Scholar 

  • Scott AC, Glasspool I (2006) The diversification of Paleozoic fire systems and fluctuation in atmospheric oxygen concentration. Proc Natl Acad Sci USA 103:10861–10865

    CAS  PubMed  Google Scholar 

  • Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106:20359–20364

    CAS  PubMed  Google Scholar 

  • Stock WD, Pate JS, Delfs J (1990) Influence of seed size and quality on seedling development under low nutrient conditions in five Australian and South African members of the Proteaceae. J Ecol 78:1005–1020

    Google Scholar 

  • Stock WD, Pate JS, Rasins E (1991) Seed development patterns in Banksia attenuata R.Br. and B. laricina C.Gardner in relation to mechanical defence costs. New Phytol 117:109–114

    CAS  Google Scholar 

  • Suc J-P (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432

    Google Scholar 

  • Summerfield MA (ed) (2000) Geomorphology and global tectonics. J Wiley, Chichester

    Google Scholar 

  • Takhtajan A (1986) Floristic regions of the world. Univ of California Press, Berkeley

    Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. Chicago Univ Press, Chicago

    Google Scholar 

  • Thompson JN (2010) Four central points about coevolution. Evol Educ Outreach 3:7–13

    Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2006) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    PubMed  Google Scholar 

  • Turner MG, Dale VH (1998) Comparing large infrequent disturbances: what have we learned? Ecosystems 1:493–496

    Google Scholar 

  • Turner MG, Hargrove WW, Gardner RH, Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J Veg Sci 5:731–742

    Google Scholar 

  • Twidale CR (1997) The great age of some Australian landforms: examples of, and possible explanations for, landscape longevity. Geol Soc Lond Spec Publ 120:13–23

    Google Scholar 

  • Twidale CR (2000) Early Mesozoic (?Triassic) landscapes in Australia: evidence, argument, and implications. J Geol 108:537–552

    Google Scholar 

  • Twidale CR (2003) The enigma of survival: problems posed by very old palaeosurfaces. Phys Geogr 24:26–60

    Google Scholar 

  • Twidale CR (2007) Ancient Australian landscapes. Rosenberg, Sydney

    Google Scholar 

  • Tzedakis PC (2007) Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quat Sci Rev 26:2042–2066

    Google Scholar 

  • Van Der Wal J, Shoo LP, Williams SE (2009) New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests. J Biogeogr 36:291–301

    Google Scholar 

  • Vasconcelos PM, Knesel KM, Cohen BE, Heim JA (2010) Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation. Aust J Earth Sci 55:865–914

    Google Scholar 

  • Verboom GA, Archibald JK, Bakker FT, Bellstedt DU, Conrad F, Dreyer LL, Forest F, Galley C, Goldblatt P, Henning JK, Mummenhoff K, Linder HP, Muasya M, Oberlander KC, Savolainen V, Snijman DA, van der Niet T, Nowell TL (2009) Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? Mol Phylogenet Evol 51:44–53

    PubMed  Google Scholar 

  • Verdú M, Dávila P, García-Fayos P, Flores-Hernández N, Valiente-Banuet A (2003) ‘Convergent’ traits of mediterranean woody plants belong to pre-mediterranean lineages. Biol J Linn Soc 78:415–427

    Google Scholar 

  • Verdú M, Pausas JS, Segarra-Moragues JG, Ojeda F (2007) Burning phylogenies: fire, molecular evolutionary rates, and diversification. Evolution 61:2195–2204

    PubMed  Google Scholar 

  • Wardell-Johnson G, Horwitz P (1996) Conserving biodiversity and the recognition of heterogeneity in ancient landscapes. For Ecol Manage 85:219–238

    Google Scholar 

  • Wardell-Johnson G, Horwitz P (2000) The recognition of heterogeneity and restricted endemism in the management of forested ecosystems in south-western Australia. Aust For 63:218–225

    Google Scholar 

  • Wardell-Johnson G, Calver M, Saunders D, Conroy S, Jones B (2004) Why the integration of demographic and site-based studies of disturbance is essential for the conservation of jarrah forest fauna. In: Lunney D (ed) Conservation of Australia’s forest fauna. Royal Zoological Society of New South Wales, Mosman, pp 394–417

    Google Scholar 

  • Whipple KX (2009) The influence of climate on the tectonic evolution of mountain belts. Nat Geosci 2:97–104

    CAS  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd edn. Macmillan, New York

    Google Scholar 

  • Williams GC (1966) Adaptation and natural selection: a critique of some current evolutionary thought. Princeton University Press, Princeton

    Google Scholar 

  • Williams PH, Gaston KJ, Humphries CJ (1997) Mapping biodiversity value worldwide: combining higher-taxon richness from different groups. Proc R Soc B Biol Sci 264:141–148

    Google Scholar 

  • Wing SL, Herrera F, Jaramillo CA, Gómez-Navarro C, Wilfe P, Labandeira CC (2009) Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proc Natl Acad Sci USA 106:18627–18632

    CAS  PubMed  Google Scholar 

  • Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank for fruitful discussions and comments on various versions kindly offered by R. Twidale, M.C. Quigley, D. Nickrent, K.W. Dixon, K. Thiele, A. Milewski, M. Fey, G. Keppel, J. Majer, P. Groom, W. Bond, H. Lambers and two anonymous referees. Any inconsistencies and errors resulting from our neglect of their advice are our responsibility. We also thank Douglas Wardell-Johnson for Fig. 1 and M. Chytrý for Fig. 2k. The paper was logistically supported by ARC Linkage Grant LP0990914 and by ARC international linkage LX0775868, and by Targeted Fellowships at Curtin University to both authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Mucina.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucina, L., Wardell-Johnson, G.W. Landscape age and soil fertility, climatic stability, and fire regime predictability: beyond the OCBIL framework. Plant Soil 341, 1–23 (2011). https://doi.org/10.1007/s11104-011-0734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0734-x

Keywords

Navigation