Skip to main content

Advertisement

Log in

Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) symbioses are formed by approximately 80% of vascular plant species in all major terrestrial biomes. In consequence an understanding of their functions is critical in any study of sustainable agricultural or natural ecosystems. Here we discuss the implications of recent results and ideas on AM symbioses that are likely to be of particular significance for plants dealing with abiotic stresses such as nutrient deficiency and especially water stress. In order to ensure balanced coverage, we also include brief consideration of the ways in which AM fungi may influence soil structure, carbon deposition in soil and interactions with the soil microbial and animal populations, as well as plant-plant competition. These interlinked outcomes of AM symbioses go well beyond effects in increasing nutrient uptake that are commonly discussed and all require to be taken into consideration in future work designed to understand the complex and multifaceted responses of plants to abiotic and biotic stresses in agricultural and natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297. doi:10.2136/vzj2006.0068

    Google Scholar 

  • Allsopp N, Stock WD (1992) Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species. Oecologia 91:281–287. doi:10.1007/BF00317797

    Google Scholar 

  • Andersen CP, Markhart AH, Dixon RK et al (1988) Root hydraulic conductivity of vesicular-arbuscular mycorrhizal green ash seedlings. New Phytol 109:465–471. doi:10.1111/j.1469-8137.1988.tb03722.x

    Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano M (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold and salinity stresses? New Phytol 173:808–816. doi:10.1111/j.1469-8137.2006.01961.x

    CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097

    Google Scholar 

  • Augé RM, Stodola AJW, Tims JE et al (2001) Moisture retention properties of a mycorrhizal soil. Plant Cell Environ 230:87–97

    Google Scholar 

  • Augé RM, Sylvia DM, Park S et al (2004) Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components. Can J Bot 82:503–514. doi:10.1139/b04-020

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464. doi:10.1007/s005720050147

    Google Scholar 

  • Bååth E, Hayman D (1984) Effect of soil volume and plant density on mycorrhizal infection and growth response. Plant Cell Environ 77:373–376

    Google Scholar 

  • Bakhtiar Y, Miller D, Cavagnaro TR et al (2001) Interactions between two arbuscular mycorrhizal fungi and fungivorous nematodes and control of the nematode with fenamifos. Appl Soil Ecol 17:107–117. doi:10.1016/S0929-1393(01) 00129-9

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1990) Ecology. Blackwell Scientific, Boston, USA

    Google Scholar 

  • Bergelson JM, Crawley JM (1988) Mycorrhizal infection and plant species diversity. Nature 334:202. doi:10.1038/334202a0

    Google Scholar 

  • Bucher M (2006) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26. doi:10.1111/j.1469-8137.2006.01935.x

    Google Scholar 

  • Burleigh SH, Cavagnaro TR, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601. doi:10.1093/jxb/erf013

    CAS  PubMed  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381. doi:10.1007/BF00195729

    CAS  Google Scholar 

  • Cavagnaro TR, Smith FA, Hay G et al (2004) Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomato. New Phytol 161:485–494. doi:10.1111/j.1469-8137.2004.00967.x

    Google Scholar 

  • Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55. doi:10.1016/S0065-2504(08) 60107-5

    Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ et al (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    PubMed  Google Scholar 

  • Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327–339. doi:10.1111/j.1469-8137.1981.tb01728.x

    CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM et al (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028. doi:10.1094/MPMI.1998.11.10.1017

    CAS  Google Scholar 

  • Davies F, Potter J, Linderman R (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of size and nutrient content. J Plant Physiol 139:289–294

    Google Scholar 

  • Drew EA (2002) External AM hyphae: their growth and function in media of varying pore sizes. PhD thesis, Department of Soil and Water, The University of Adelaide, Adelaide, Australia

    Google Scholar 

  • Drew EA, Murray RS, Smith SE et al (2003) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Cell Environ 251:105–114

    CAS  Google Scholar 

  • Duan XG, Neuman DS, Reiber JM et al (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550. doi:10.1093/jxb/47.10.1541

    CAS  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483. doi:10.1093/jxb/erm009

    CAS  PubMed  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN et al (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94

    Google Scholar 

  • Facelli E, Facelli JM, Smith SE et al (1999) Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker. New Phytol 141:535–547. doi:10.1046/j.1469-8137.1999.00367.x

    Google Scholar 

  • Faiz S, Weatherley P (1982) Root contraction in transpiring plants. New Phytol 92:333–343. doi:10.1111/j.1469-8137.1982.tb03391.x

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi:10.1146/annurev.pp. 40.060189.002443

    CAS  Google Scholar 

  • Finlay RD (1985) Interactions between soil micro-arthropods and endomycorrhizal associations of higher plants. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific Publications, Oxford, pp 319–331

    Google Scholar 

  • Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79:119–125. doi:10.1111/j.1469-8137.1977.tb02187.x

    CAS  Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243. doi:10.1111/j.0022-0477.2005.00990.x

    Google Scholar 

  • Fitter AH, Sanders IR (1992) Interactions with soil fauna. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London, pp 333–354

    Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418. doi:10.2307/3760351

    Google Scholar 

  • Gahoonia TS, Nielsen NE (2004a) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Cell Environ 262:55–62

    CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004b) Root traits as tools for creating phosphorus efficient crop varieties. Plant Cell Environ 260:47–57

    Google Scholar 

  • Gahoonia TS, Raza S, Nielsen NE (1994) Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant Soil 159:213–218. doi:10.1007/BF00009283

    CAS  Google Scholar 

  • Gange A (2000) Arbuscular mycorrhizal fungi, collembola and plant growth. Trends Ecol Evol 15:369–372. doi:10.1016/S0169-5347(00) 01940-6

    PubMed  Google Scholar 

  • Gange AC, Brown VK (1992) Interactions between soil-dwelling insects and mycorrhizas during early plant succession. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 177–182

    Google Scholar 

  • Gange AC, Brown VK (2002a) Actions and interactions of soil invertebrates and arbuscular mycorrhizal fungi in affecting structure of plant communities. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg, pp 321–344

    Google Scholar 

  • Gange AC, Brown VK (2002b) Soil food web components affect plant community structure during early succession. Ecol Res 17:217–227. doi:10.1046/j.1440-1703.2002.00481.x

    Google Scholar 

  • George E, Haeussler KU, Vetterlein D et al (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137. doi:10.1139/b92-265

    Google Scholar 

  • Giovannetti M, Sbrana C, Avio L et al (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181. doi:10.1111/j.1469-8137.2004.01145.x

    Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698. doi:10.1007/s00425-005-0015-0

    CAS  PubMed  Google Scholar 

  • Grace JB (1995) In search of the Holy Grail: explanation for the coexistence of plant species. Trends Ecol Evol 10:263–264. doi:10.1016/0169-5347(95) 90001-2

    Google Scholar 

  • Grace EJ, Cotsaftis O, Smith FA et al (2009a) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonisation, fungal P uptake or effects on plant phosphate transporter expression. New Phytol 181:938–949. doi:10.1111/j.1469-8137.2008.02720.x

    CAS  Google Scholar 

  • Grace EJ, Smith FA, Smith SE (2009b) Deciphering the arbuscular mycorrhizal pathway of P uptake in non-responsive plant species. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer, Berlin, Heidelberg, pp 89–106

    Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas? New Phytol 149:357–359. doi:10.1046/j.1469-8137.2001.00077.x

    Google Scholar 

  • Graham JH (2008) Scaling-up evaluation of field functioning of arbuscular mycorrhizal fungi. New Phytol 180:1–2. doi:10.1111/j.1469-8137.2008.02608.x

    PubMed  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422. doi:10.1038/328420a0

    Google Scholar 

  • Hall IR (1978) Effects of endomycorrhizas on the competitive ability of white clover. NZ J Agric Res 21:509–515

    Google Scholar 

  • Hallet PD, Feeney DS, Bengough AG et al (2009) Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314:183–196. doi:10.1007/s11104-008-9717-y

    Google Scholar 

  • Hardie K (1985) The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol 101:677–684. doi:10.1111/j.1469-8137.1985.tb02873.x

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, New York, USA

    Google Scholar 

  • Hartnett DC, Hetrick BAD, Wilson GWT et al (1993) Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J Ecol 81:787–795. doi:10.2307/2261676

    Google Scholar 

  • Hetrick BAD, Hartnett DC, Wilson GWT et al (1994) Effects of mycorrhizae, phosphorus availability, and plant density on yield relationships among competing tallgrass prairie grasses. Can J Bot 72:168–176. doi:10.1139/b94-023

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1996) Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can J Bot 74:19–25. doi:10.1139/b96-003

    CAS  Google Scholar 

  • Horton TR, van der Heijden MGA (2008) The role of symbioses in seedling establishment and survival. In: Allessio ML, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 189–213

    Google Scholar 

  • Huston MA, de Angelis DL (1994) Competition and coexistence: the effects of resource transport and supply rates. Am Nat 144:954–977. doi:10.1086/285720

    Google Scholar 

  • Jakobsen I (2004) Hyphal fusions to plant species connections-giant mycelia and community nutrient flow. New Phytol 164:4–7. doi:10.1111/j.1469-8137.2004.01163.x

    Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2002) Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer-Verlag, Berlin, Heidelberg, pp 75–92

    Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322. doi:10.1111/j.1365-3040.2006.01617.x

    CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586. doi:10.1046/j.1469-8137.1997.00729.x

    Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109. doi:10.1139/b04-110

    Google Scholar 

  • Journet EP, van Tuinen D, Gouzy J et al (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 30:5579–5592. doi:10.1093/nar/gkf685

    PubMed  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301. doi:10.1890/02-0413

    Google Scholar 

  • Klironomos JN, Bednarczuk EM, Neville J (1999) Reproductive significance of feeding on saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Funct Ecol 13:756–761. doi:10.1046/j.1365-2435.1999.00379.x

    Google Scholar 

  • Koide RT (1991) Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia 85:389–395. doi:10.1007/BF00320615

    Google Scholar 

  • Koide RT (1993) Physiology of the mycorrhizal plant. In: Ingram DS, Williams PH (eds) Advances in Plant Pathology, vol 9. Academic, London, pp 33–54

    Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581. doi:10.1146/annurev.pp. 43.060192.003013

    CAS  Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184. doi:10.1080/713610854

    Google Scholar 

  • Lambers H, Poot P (eds) (2003) Structure and functioning of cluster roots and plant responses to phosphate deficiency. Kluwer, Dordrecht, Boston, London

  • Lambers H, Chapin FSI, Pons TL (2008a) Plant Physiological Ecology. Springer, New York

    Google Scholar 

  • Lambers H, Raven JA, Shaver G et al (2008b) Plant nutrient acquisiton strategies change with soil age. Trends Ecol Evol 23:95–103. doi:10.1016/j.tree.2007.10.008

    PubMed  Google Scholar 

  • Li HY, Zhu YG, Marschner P et al (2005) Wheat responses to arbuscular mycorrhizal fungi in a highly calcareous soil differ from those of clover, and change with plant development and P supply. Plant Soil 277:221–232. doi:10.1007/s11104-005-7082-7

    CAS  Google Scholar 

  • Li HY, Smith SE, Holloway RE et al (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543. doi:10.1111/j.1469-8137.2006.01846.x

    CAS  PubMed  Google Scholar 

  • Li HY, Smith FA, Dickson S et al (2008a) Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol 178:852–862. doi:10.1111/j.1469-8137.2008.02410.x

    PubMed  Google Scholar 

  • Li HY, Smith SE, Ophel-Keller K et al (2008b) Naturally occurring arbuscular mycorrhizal fungi can replace direct P uptake by wheat when roots cannot access added P fertiliser. Funct Plant Biol 35:124–130. doi:10.1071/FP07202

    CAS  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA et al (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and response to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact 11:14–22. doi:10.1094/MPMI.1998.11.1.14

    CAS  PubMed  Google Scholar 

  • Luu D-T, Maurel C (2005) AQPs in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96. doi:10.1111/j.1365-3040.2004.01295.x

    CAS  Google Scholar 

  • Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180–1186

    Google Scholar 

  • Marschner P, Crowley DE (1996) Root colonization of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum) by Pseudomonas fluorescens 2-79RL. New Phytol 134:115–122. doi:10.1111/j.1469-8137.1996.tb01151.x

    Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Cell Environ 251:279–289

    CAS  Google Scholar 

  • Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36. doi:10.1016/j.apsoil.2004.06.007

    Google Scholar 

  • Marschner P, Crowley DE, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302. doi:10.1007/s00572-001-0136-7

    CAS  Google Scholar 

  • McGonigle TP, Fitter AH (1988) Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proc R Soc Edin 94B:25–32

    Google Scholar 

  • Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898. doi:10.1111/j.1469-8137.2008.02623.x

    PubMed  Google Scholar 

  • Miller RM, Jastrow JD, Reinhardt DR (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23. doi:10.1007/BF00328420

    Google Scholar 

  • Miller RM, Jastrow JD (2002) Mycorrhizal influence on soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizae: molecular biology and physiology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 3–18

    Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M et al (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364. doi:10.1111/j.1469-8137.2004.01169.x

    Google Scholar 

  • Nadian H, Smith SE, Alston AM et al (1998) Effects of soil compaction on phosphorus uptake and growth of Trifolium subterraneum colonized by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 139:155–165. doi:10.1046/j.1469-8137.1998.00219.x

    Google Scholar 

  • Neumann E, George E (2004) Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L.). Plant Cell Environ 261:245–255

    CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995a) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000. doi:10.2307/2261180

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995b) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411. doi:10.1016/S0169-5347(00) 89157-0

    Google Scholar 

  • Nobel PS, Cui MY (1992) Hydraulic conductances of the soil, the root soil air gap, and the root- changes for destert succulents in drying soil. J Exp Bot 43:319–326. doi:10.1093/jxb/43.3.319

    Google Scholar 

  • Nurmiaho-Lassila EL, Timonen S, Haahtela K et al (1997) Bacterial colonisation patterns of intact Scots pine mycorrhizospheres in dry pine forest soil. Can J Microbiol 43:1017–1035

    Article  CAS  Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209–218. doi:10.1046/j.1469-8137.2002.00364.x

    Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Cell Environ 76:319–337

    CAS  Google Scholar 

  • Olsson PA, Johnson NC (2005) Tracking carbon from the atmosphere to the rhizosphere. Ecol Lett 8:1264–1270. doi:10.1111/j.1461-0248.2005.00831.x

    Google Scholar 

  • Paszkowski U, Kroken S, Roux C et al (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329. doi:10.1073/pnas.202474599

    CAS  PubMed  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983a) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Cell Environ 70:199–209

    CAS  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983b) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. II. Soil fumigation induced stunting of plants corrected by reinoculation of the wild endomycorrhiza flora. Plant Cell Environ 70:211–217

    CAS  Google Scholar 

  • Porcel R, Aroca R, Azcón R et al (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa in relation to drought stress tolerance. Plant Mol Biol 60:389–404. doi:10.1007/s11103-005-4210-y

    CAS  PubMed  Google Scholar 

  • Poulsen KH, Nagy R, Gao LL et al (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–453. doi:10.1111/j.1469-8137.2005.01523.x

    CAS  PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2003a) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64. doi:10.1007/s00442-002-1078-2

    PubMed  Google Scholar 

  • Querejeta JI, Barea JM, Allen MF et al (2003b) Differential response of delta C-13 and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135:510–515

    PubMed  Google Scholar 

  • Querejeta JI, Allen MF, Caravaca F et al (2006) Differential modulation of host plant δ13C and δ18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment. New Phytol 169:379–387. doi:10.1111/j.1469-8137.2005.01599.x

    CAS  PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2007a) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol Biochem 39:409–417. doi:10.1016/j.soilbio.2006.08.008

    CAS  Google Scholar 

  • Querejeta JI, Allen MF, Alguacil MM et al (2007b) Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Funct Plant Biol 34:860–691. doi:10.1071/FP07061_CO

    CAS  Google Scholar 

  • Radin JW, Eidenbock MP (1984) Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol 75:372–377. doi:10.1104/pp. 75.2.372

    CAS  PubMed  Google Scholar 

  • Radin JW, Matthews MA (1989) Water transport properties of cortical cells in roots of nitrogen-deficient and phosphorus-deficient cotton seedlings. Plant Physiol 89:264–268. doi:10.1104/pp. 89.1.264

    CAS  PubMed  Google Scholar 

  • Rae AL, Jarmey JM, Mudge SR et al (2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. Funct Plant Biol 31:141–148. doi:10.1071/FP03159

    CAS  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618. doi:10.1111/j.1469-8137.1995.tb03029.x

    Google Scholar 

  • Reinbott TM, Blevins DG (1999) Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plants. Plant Cell Environ 209:263–273

    CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Google Scholar 

  • Rillig MC, Wright SF, Nichols KA et al (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Cell Environ 233:167–177

    CAS  Google Scholar 

  • Robinson D, Fitter AH (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50:9–13. doi:10.1093/jexbot/50.330.9

    CAS  Google Scholar 

  • Sanders IR, Fitter AH (1992) The ecology and functioning of vesicular-arbuscular mycorrhizas in co-existing grassland species II. Nutrient uptake and growth of vesicular-arbuscular mycorrhizal plants in a semi-natural grassland. New Phytol 120:525–533. doi:10.1111/j.1469-8137.1992.tb01802.x

    CAS  Google Scholar 

  • Sarand L, Timonen S, Nurmiaho-Lassila EL et al (1998) Microbial biofilms and catabolic plasmid-harbouring degradative fluorescent pseudomonads in Scots Pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:115–126. doi:10.1111/j.1574-6941.1998.tb00529.x

    CAS  Google Scholar 

  • Schoonmaker AL, Teste FP, Simard SW et al (2007) Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Oecologia 154:455–466. doi:10.1007/s00442-007-0852-6

    PubMed  Google Scholar 

  • Schroeder-Moreno MS, Janos DP (2008) Intra- and inter-specific density affects plant growth responses to arbuscular mycorrhizas. Botany 86:1180–1193. doi:10.1139/B08-080

    Google Scholar 

  • Sharda JN, Koide RT (2008) Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi? New Phytol 180:696–701. doi:10.1111/j.1469-8137.2008.02600.x

    CAS  PubMed  Google Scholar 

  • Shaul O, Galili S, Volpin H et al (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant Microbe Interact 12:1000–1007. doi:10.1094/MPMI.1999.12.11.1000

    CAS  PubMed  Google Scholar 

  • Sieverding E, Toro S, Mosquera O (1989) Biomass production and nutrient concentrations in spores of VA mycorrhizal fungi. Soil Biol Biochem 21:69–72. doi:10.1016/0038-0717(89) 90013-8

    Google Scholar 

  • Silberbush M, Barber SA (1983) Sensitivity of simulated phosphate uptake parameters used by a mechanistic mathematical model. Plant Cell Environ 74:93–100

    CAS  Google Scholar 

  • Silvertown JW, Lovett-Doust J (1993) Introduction to plant population biology. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Elsevier and Academic, New York, London, Burlington, San Diego

    Google Scholar 

  • Smith SE, Long CM, Smith FA (1989) Infection of roots with a dimorphic hypodermis: possible effects on solute uptake. Agric Ecosyst Environ 29:403–407. doi:10.1016/0167-8809(90) 90306-X

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20. doi:10.1104/pp. 103.024380

    CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524. doi:10.1111/j.1469-8137.2004.01039.x

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009a) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol . doi:10.1111/j.1469-8137.2008.02753.x

    Google Scholar 

  • Smith SE, Li HY, Grace EJ et al (2009b) New insights into roles of arbuscular mycorrhizas in crops reveal the need for conceptual changes. In: Gupta V, Ryder M (eds) The Rovira Rhizosphere Symposium. The Crawford Fund, Melbourne pp in press

    Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N et al (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140. doi:10.1126/science.1084269

    CAS  PubMed  Google Scholar 

  • Tinker PBH, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

    Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. doi:10.1111/j.1365-2389.1982.tb01755.x

    CAS  Google Scholar 

  • Tobar RM, Azcón R, Barea JM (1994) Improved nitrogen uptake and transport from 15 N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119–122. doi:10.1111/j.1469-8137.1994.tb07536.x

    Google Scholar 

  • Tyerman SD, Bohnert HG, Maurel C et al (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071. doi:10.1093/jexbot/50.suppl_1.1055

    CAS  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M et al (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochem 68:122–129. doi:10.1016/j.phytochem.2006.09.033

    CAS  Google Scholar 

  • Urcelay C, Diaz S (2003) The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecol Lett 6:388–391. doi:10.1046/j.1461-0248.2003.00444.x

    Google Scholar 

  • van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg, pp 243–265

    Google Scholar 

  • van der Heijden MGA (2004) Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett 7:293–303. doi:10.1111/j.1461-0248.2004.00577.x

    Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A et al (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M et al (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. doi:10.1038/23932

    Google Scholar 

  • Viets F (1972) Water deficits and nutrient availability. In: Kozlowski T (ed) Water deficits and plant growth Volume 3. Academic, New York, pp 217–239

    Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562. doi:10.1111/j.1469-8137.2006.01854.x

    PubMed  Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC et al (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394. doi:10.1111/j.1469-8137.2008.02377.x

    CAS  PubMed  Google Scholar 

  • Watkinson AR, Freckleton RP (1997) Quantifying the impact of arbuscular mycorrhiza on plant competition. J Ecol 85:541–545. doi:10.2307/2960576

    Google Scholar 

  • Weiner J (1990) Asymmetric competition in plants. Trends Ecol Evol 5:360–364. doi:10.1016/0169-5347(90) 90095-U

    Google Scholar 

  • Zabinski CA, Quinn L, Callaway RM (2002) Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Funct Ecol 16:758–765. doi:10.1046/j.1365-2435.2002.00676.x

    Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409. doi:10.1016/S1360-1385(03) 00184-5

    CAS  PubMed  Google Scholar 

  • Zhu YG, Smith FA, Smith SE (2003) Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza 13:93–100

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Emily Grace and Elizabeth Drew for making Figs. 1 and 2, respectively, available to us. Our research is funded by the Australian Research Council. Our attendance (FAS and SES) at the International Workshop on Soil-Plant Interactions and Sustainable Agriculture in Arid Environments, Shihezi, Xinjiang, China was supported by the conference organisers, for which we are most grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally E. Smith.

Additional information

Responsible Editor: Peter Christie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S.E., Facelli, E., Pope, S. et al. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326, 3–20 (2010). https://doi.org/10.1007/s11104-009-9981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9981-5

Keywords

Navigation